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In this lecture we see how to connect the number of steps of weak head reduction,
which is a reasonable time cost model, with a notion of type related to linear logic and
inducing a denotational model. At the end of the lecture we also see the connection with
the linear substitution calculus.

This note at times uses colors to help parsing symbols, but colors do not have any
special meaning.

1 Preliminaries

Type systems are a form of compositional abstraction in which the behavior of pro-
grams, particularly higher-order programs such as λ-terms, is described by types, that
is, specifications of the kinds of objects that programs expect in input and are supposed
to produce as output. As famously stated by Milner, typed programs cannot go wrong,
as types guarantee the absence of run-time errors. Some type systems ensure also other
properties such as termination or various forms of security.

Simple Types. A cornerstone of the field is the fact that type systems for λ-calculi can
be seen as logical systems. This is the Curry-Howard correspondence, whose prototypical
instance is the fact that the typing rules for simple types for the λ-calculus below are
exactly minimal (that is, implication only) intuitionistic logic, once terms (in blue) are
erased and only types (in red) are considered.

(var)

Γ, x : A ⊢ x : A
Γ, x : A ⊢ t : B

(λ)

Γ ⊢ λx.t : A → B

Γ ⊢ t : A → B Γ ⊢ u : A
(@)

Γ ⊢ tu : B

We assume the reader familiar with the basics of type systems, but let’s fix nonetheless
a few notions. Here the grammar of types is

Simple types A,B ::= X | A → B
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Where X is an unspecified ground type, you may think of booleans or natural numbers—
it is not important which type it is, we simply need a base type for the inductive definition
of types to be well founded.
Also, Γ is a type context (also noted ∆,Π), that is, a partial function from variables to

simple types of finite domain dom(Γ), i.e. defined only on a finite number of variables. We
write Γ = x1 : A1, . . . , xn : An if dom(Γ) = {x1, . . . , xn} and Γ(xi) = Ai for i ∈ {1, . . . , n},
and when we write Γ, x : A (as in the hypothesis of the rule for abstractions) we implicitly
assume that x /∈ dom(Γ).
The guarantee provided by simple types is a strong form of termination, namely strong

normalization (a typable term has no diverging evaluation sequences).

Theorem 1.1. If t is typable with simple types then t is strongly normalizing.

This theorem can be proved in many different ways. Some of the proofs are remarkably
concise, but they tend to not scale up to richer type systems, as they exploit strong
properties of the system, due to its simplicity. We are not going to prove the theorem,
as it should be background knowledge for the students of this course, and its proofs can
easily be found in the literature.

Guarantees, Characterizations, and Decidability. Usually type systems do not charac-
terize the property that they guarantee, that is, there are terms satisfying the property
that are not typable in the system. In our case, there are strong normalizing terms that
are not typable with simple types. For instance, the duplicator δ is not (δ is typable with
polymorphic types, but there are more complex terms that are strongly normalizing and
not typable with polymorphic types).
Type systems are often studied in order to be useful in practice for programming.

Given the Turing completeness of the λ-calculus, most interesting properties of programs,
typically termination, are undecidable by Rice’s theorem. Therefore, every type system
that would characterize them (i.e. such that a term has that property if and only if it is
typable) would not allow automatic type inference, for instance.

2 Intersection Types

Characterizations of terminating λ-terms can be given by switching from simple to in-
tersection types, introduced by Coppo and Dezani-Ciancaglini in 1978.

The basic idea is to allow a term to have more than one type at the same time.
Concretely, one introduces a new type constructor A ∩ B, called intersection, and the
following introduction and elimination rules:

Γ ⊢ t : A Γ ⊢ t : B
(∩i)

Γ ⊢ t : A ∩B
Γ ⊢ t : A ∩B

(∩e1)

Γ ⊢ t : A
Γ ⊢ t : A ∩B

(∩e2)

Γ ⊢ t : B

Intersection types are a flexible tool for characterizing termination. By carefully tuning
the obtained type system (by adding further rules or side conditions), one obtains charac-
terizations of terminating term with respect to various notions of termination, typically
strongly or weakly normalizing terms, and head or weak head normalizing terms.
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Undecidable. Since they characterize termination, whether a term is typable with in-
tersection types is undecidable. Therefore, they are not a type system that is useful in
practice. Some of their restrictions—that no longer characterize termination—do how-
ever find some applications in the theory of programming languages, see the survey by
Bono and Dezani-Ciancaglini [BD20].

Intersections vs Conjuctions. As a logic, they do not really fit the Curry-Howard
correspondence. At the type level, the rules for intersections look like those for conjuc-
tions. When one looks at their decoration with terms, however, it becomes clear that
intersections are not conjunctions. Conjuctions are decorated as follows:

Γ ⊢ t : A Γ ⊢ u : B
(∧i)

Γ ⊢ (t, u) : A ∧B

where (t, u) is a constructors for pairs of terms. Note that the introduction of conjuctions
involves two arbitrary terms t and u, while the rule for intersections requires twice the
same term t, imposing a structural constraint that is absent for conjuctions.
Intersection types are not useful in practice and do not provide a Curry-Howard logic.

What are they interesting for then? They provide a syntactic approach to define and
study denotational semantics, as we shall see.

3 Set Types

In their original formulation, intersections satisfy the following three natural properties:

Associativity: (A ∩B) ∩ C = A ∩ (B ∩ C);

Commutativity: A ∩B = B ∩A;

Idempotency: A ∩A = A.

Essentially, intersections can be seen as sets, and the introduction of intersection showed
before can be seen in set notation as follows:

Γ ⊢ t : A Γ ⊢ t : B
(∩i)

Γ ⊢ t : {A,B}
In the following, we adopt a modern approach and rename intersection types into set
types, also removing other aspects of the theory of intersection types that are not needed
for our study, such as subtyping and intersections on the right of arrows.

The Set Types System. Types at work in the type system are organized in two mu-
tually defined layers:

Basic Types A,B ::= X | S → A
Set Types S ::= {Ai}i∈I I a finite set

The definition suggests a connection with linear logic, where A → B is represented as
!A⊸ B, while here we have {A1, . . . , An} → B.
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The empty set type ∅ is a valid type, that shall play a crucial role. A type context
Γ now assigns a set type to every variable, but a non-empty set type only to a finite
number of variables, forming its domain. That is, Γ = x1 : S1, . . . , xn : Sn with dom(Γ) ⊆
{x1, . . . , xn}, where ⊆ expresses the fact that when we specify the type of each variable
we may also write some of the infinitely many one that are assigned to ∅. Given two type
contexts Γ and ∆ we use Γ∪∆ for the type contexts such that (Γ∪∆)(x) := Γ(x)∪∆(x).

The system has two kinds of judgements, Γ ⊢ t : A and Γ ⊢ t : S, depending on
whether the right-hand type is a basic or a set type.

The typing rules are:

Γ, x : {A} ⊢⊢⊢x : A
ax

(∆i ⊢⊢⊢t : Ai)i∈I
∪i∈I∆i ⊢⊢⊢t : {Ai}i∈I

many

Γ ⊢⊢⊢t : A
Γ \\x ⊢⊢⊢λx.t : Γ(x) → A

fun
Γ ⊢⊢⊢t : S → B ∆ ⊢⊢⊢u : S

Γ ∪∆ ⊢⊢⊢tu : B
app

Some comments:

• Weakening : note the presence of Γ in the axiom rule, which expresses that the
system includes weakening on the left.

• Many : the many rule is the only one introducing sets on the right of ⊢. The set
of indices I can be empty, that is, the rule may have 0 premises. In such a case,
it assigns the empty set ∅ type, and note that it can assign it to whatever term,
because of the absence of premises. Namely, with 0 premises the rule takes the
following form:

⊢⊢⊢t : ∅
many

• Abstractions: rule fun is a compact notation for the following two rules:

Γ, x : S ⊢⊢⊢t : A
Γ ⊢⊢⊢λx.t : S → A

fun
Γ ⊢⊢⊢t : A x /∈ dom(Γ)

Γ ⊢⊢⊢λx.t : ∅ → A
fun

where the second one handles the case of a variable not explicitly assigned in
the typing context of the premise, and it is based on the fact that Γ(x) = ∅ if
x /∈ dom(Γ).

• Applications and arguments: note that the only place where set types appear on
the right-hand side of ⊢ in the premises of a rule is for the argument of applica-
tions. This fact mimics the use of the promotion rule of LL for arguments in the
translation of λ-calculus to LL.

Note also that the application rule is formulated multiplicatively. It can also be
formulated additively, this is not essential.

The notation π ▷ Γ ⊢ t : A is used to stress that π is a type derivation of the judgement
Γ ⊢ t : A.
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Examples. In contrast to simple or polymorphic types, set types can type the dupli-
cating term δ = λy.yy as follows:

y : {{X} → X} ⊢⊢⊢y : {X} → X
ax

y : {X} ⊢⊢⊢y : X
ax

y : {X} ⊢⊢⊢y : {X}
many

y : {{X} → X,X} ⊢⊢⊢yy : X
app

⊢⊢⊢λy.yy : {{X} → X,X} → X
fun

The empty set type can be used to type erasing β-steps, as follows:

z : X ⊢⊢⊢z : X

z : X ⊢⊢⊢λy.z : ∅ → X
fun ⊢⊢⊢t : ∅

many

z : X ⊢⊢⊢(λy.z)t : X
app

Note indeed that (λy.z)t →β z erases t. The use of ∅ is actually quite subtle, as the next
exemple shows:

y : {∅ → X} ⊢⊢⊢y : ∅ → X
ax

⊢⊢⊢Ω : ∅
many

y : {∅ → X} ⊢⊢⊢yΩ : X
app

Here y is assigned an erasing type without y being actually able to erase its argument,
and then it is applied to the diverging term Ω, obtaining that the diverging term yΩ is
typable. What is the notion of termination that is characterized by set types then?

Characterization Theorem. The system of set types that we presented characterizes
termination with respect to head reduction →h.

Theorem 3.1 (Characterization). A λ-term t is typable with set types if and only if t
is →h-normalizing.

In the first lecture, we saw that head normalizable terms can be taken as a notion of
defined term when representing Godel’s partial recursive functions (while normalizable
terms cannot), and we saw that head normalization can also be justified via rewriting
theory by means of a factorization theorem. Set types provide a type theoretic charac-
terization, that, as we shall show in a moment, leads to a denotational characterization.
The proof of the characterization theorem is non-trivial. Direction ⇒ is usually called

correctness, and direction ⇐ completeness. Completeness is easy, while correctness is
involved. Let’s start with completeness.

Completeness. The proof is in two steps, both peculiar to set types and not usually
verified by other type systems. The first one is the fact that every head normal form is
typable.

Proposition 3.2. Every head normal form is typable with set types.

Remember that head normal forms have shape λx1. . . . λxn.(yt1 . . . tk), where y may
be one of the xi, and n, k ≥ 0.
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Proof. Exercise : prove that head nfs are typable. Hint: consider first terms of the form
yt1 . . . tk.

The second step is a subject expansion property, stating that typability can be pulled
back along a head β-step.

Proposition 3.3 (Subject expansion). If t →h u and π ▷ Γ ⊢ u : A then there exists a
type derivation ρ ▷ Γ ⊢ t : A.

For the proof, we need a removal lemma, whose proof is omitted (it is by induction
on π, and it is not difficult, simply a bit tedious and not really interesting).

Lemma 3.4 (Removal). If π ▷ Γ ⊢ r{x�p} : A then there exists a set type S and two
derivations πr and πp such that

1. πr ▷∆, x : S ⊢ r : A,

2. πp ▷Π ⊢ p : S.

with Γ = ∆ ∪Π.

We can now prove subject expansion.

Proof. Proof by induction on t →h u.

• Base case, step at top level : t = (λx.r)p →h r{x�p} = u. The derivation in the
hypothesis is π ▷ Γ ⊢ r{x�p} : A. Then by the removal lemma (Lemma 3.4) we
obtain a set type S and two derivations πr ▷∆, x : S ⊢ r : A and πp ▷ Π ⊢ p : S
such that Γ ∪∆. The derivation ρ of the statement is then defined as follows:

πr ▷

....
∆, x : S ⊢ r : A

∆ ⊢ λx.r : S → A
T-λ

πp ▷

....
Π ⊢ p : S

∆ ∪Π ⊢ (λx.r)p : A
T-@

• Inductive case, step on the left of the root application: t = rp →h r′p = u with
r →h r′. Then π has the following shape.

πr′ ▷

....
∆ ⊢ r′ : S → A πp ▷

....
Π ⊢ p : S

∆ ∪Π ⊢ r′p : A
T-@

with Γ = ∆ ∪ Π. Applying the i.h. to the left sub-derivation πr′ , we obtain
ρr ▷∆ ⊢ r : S → A. Then ρ is defined as follows.

ρ :=

ρr ▷

....
∆ ⊢ r : S → A πp ▷

....
Π ⊢ p : S

∆ ∪Π ⊢ rp : A
T-@
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• Inductive case, step under abstraction: t = λx.r →h λx.r′ = u with r →h r′.
Similar to the previous one.

The two steps together give us completeness.

Theorem 3.5 (Completeness). If t is head normalizable then it is typable.

Proof. Let t →k
h u the reduction to head normal form. By induction on k. Case:

• k = 0) Then t = u and t is typable by Proposition 3.2, that is, Γ ⊢ u : A.

• k > 0) Then t →h r →k−1
h u. By i.h., r is typable, that is, Γ ⊢ r : A. By subject

expansion, Γ ⊢ t : A.

Correctness. Correctness of set types with respect to head normalization is difficult
to prove. The reason is that one needs to extract a termination argument from the
typability hypothesis, but it is unclear what decreases.

The typical technique for showing termination from typability is the reducibility method,
also called the logical relation technique. We are not going to see it here, because it is
heavy and because in the next section we shall develop an alternative lighter approach.

Subject Reduction. As most type systems, set types verify subject reduction, which
is the property dual to subject expansion: typibality is preserved along β-steps. The
proof is also dual. It relies on a substitution lemma, stating that typability is stable by
substitution, which is dual to the removal lemma seen above.

Lemma 3.6 (Substitution). If πr ▷Γ, x : S ⊢ r : A and πp ▷∆ ⊢ p : S then there exists
πr{x�p} ▷ Γ ∪∆ ⊢ r{x�p} : A

The proof of the lemma is omitted (for the same reasons as for the removal lemma, it
is by induction on πr).

Proposition 3.7 (Subject reduction). If t →h u and π ▷ Γ ⊢ t : A then there exists
ρ ▷ Γ ⊢ u : A.

Proof. Exercise .

The Induced Denotational Model. Subject reduction and expansion taken together
give the fact that set type judgements are stable by head reduction, that is, they are
invariant. A denotational model of the λ-calculus is given by an invariant of β-reduction
satisfying some additional properties—the technical notion is the one of λ-model. For
the sake of simplicity, we slightly abuse terminologies and call model every interpretation
that is invariant by β-reduction, forgetting about the additional properties1.
The set semantics of a term is defined as:

1One way of defining λ-models is to consider the semantic interpretation J·K from λ-terms to some
mathematical objects and the induced equality =J·K on terms (defined as t =J·K u if JtK = JuK) and
say that the co-domain of J·K is a λ-model if =J·K is a λ-theory (discussed in the first lecture), that
is, if it contains β-conversion (thus the interpretation is in particular stable by β-reduction) and it is
stable by context closure and α-equivalence.
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JtKset := {((S1, .., Sk), A) | x1 : S1, .., xk : Sk ⊢ t : A}

By subject reduction and expansion JtKset is invariant by head evaluation, but it can
be easily shown that it is invariant for every β-step. By correctness (that we did not
prove but it holds) and completeness, it is an adequate semantics with respect to head
reduction →h, where adequate means that it is non-empty if and only if →h terminates.

The Weak Head Case. We mentioned that set types are a flexible tool, that via minor
variations characterize different notions of termination. A variant that we shall use in
Sect. 7 is the one characterizing termination with respect to weak head reduction. To
that aim, it is enough to add the following rule to the type system:

⊢⊢⊢λx.t : X fun-ax

Stating that every abstraction is typable, corresponding to the fact that every abstraction
is a normal form in the weak head case. Note that now λx.Ω is typable, while it is not
typable in the system without rule fun-ax, because it →h-diverges.

4 Multi Types

Traditionally, intersection is idempotent, that is, one has A ∩ A = A, which in terms of
sets becomes {A,A} = {A}. Dropping idempotentcy does not change the set of typable
terms, it only changes the assigned types and the structure of type derivations. The key
point is that if A ∩A ̸= A then intersections can be seen as multi-sets rather than sets.
Therefore, A ∩ A is rather written as [A,A], and we use multi (set) types for concisely
refer to non-idempotent intersection types.
Switching from set to multi sets strengthens the linear logic flavor as it is analogous

to switching from A ∧ A, which is logically equivalent to A, to A ⊗ A, which is instead
not logically equivalent to A. To strengthen even more the linear flavor, we also remove
weakening from axioms. The multi type system then becomes:

Linear types A,B ::= X | M → A
Multi-sets M ::= [Ai]i∈I I a finite set

The empty multi-set is noted [ ], and we use ⊎ for multi-set sum, for instance [A,A,B]⊎
[A,C] = [A,B,A,A,C] and M ⊎ [ ] = M . The type contexts Γ ⊎ ∆ is defined as
(Γ ⊎∆)(x) := Γ(x) ⊎∆(x).

The typing rules are:

x : [A] ⊢⊢⊢x : A
ax

(∆i ⊢⊢⊢t : Ai)i∈I
⊎i∈I∆i ⊢⊢⊢t : [Ai]i∈I

many

Γ ⊢⊢⊢t : A
Γ \\x ⊢⊢⊢λx.t : Γ(x) → A

fun
Γ ⊢⊢⊢t : M → B ∆ ⊢⊢⊢u : M

Γ ⊎∆ ⊢⊢⊢tu : B
app
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Multi Types Semantics. The semantical interpretation of set types lifts to a multi-set
semantics, as follows:

JtKmset := {((M1, ..,Mk), A) | x1 : M1, .., xk : Mk ⊢ t : A}

We shall see that multi types and set types do type the same terms. Therefore, from the
adequacy of the set semantics with respect to head reduction →h is follows the adequacy
of the multi set semantics J·Kmset.

Multi Types and Linear Logic. The linear logic character of multi types is more than
just a flavor. The multi set semantics is actually deeply related to the relational seman-
tics of LL, the simplest and somewhat canonical model of LL (living in the category of
sets and relations, where ⊗ is interpreted by the cartesian product of sets, and ! by the
multi-set comonad). The multi set semantics is in fact exactly the relational semantics
of LL restricted to the image of the (CbN) encoding of λ-terms.

Literature on Multi Types. In the literature, multi types are more often called non-
idempotent intersection types. They make their first appearance as a technical tool to
study intersection types in 1980 in a work by Coppo, Dezani-Ciancaglini, and Venneri
[CDCV80]. They were however first considered by themselves only in 1994 by Gardner
[Gar94], and then by various works [Kfo00, NM04, dC07, dC18]—a survey is [BKV17].
Multi types were also implicitly used in the large literature on relational semantics.

In particular, in Ehrhard’s extensive work on models of LL, that focussed on relational
semantics and on its variations and enrichments, see for instance [Ehr93, Ehr05, BEM07,
Ehr12].

Why Multi Types Are Interesting. The difference between set and multi set types
is that the latter induce bigger types and bigger type derivations. Next section gives
examples of this fact using Church numerals. The difference in size has two consequences
that we analyze in detail after the examples. First, it allows for a simple proof of
the correctness part of the characterization theorem for multi types. Second, it allows
to extract bounds from type derivations and to unveil the quantitative character of
relational semantics.

5 Examples of Multi Types Derivations

The typical example of bigger types and bigger derivations for multi types is given by
Church numerals. Let’s recall Church’s encoding of natural numbers in the λ-calculus:

0 := λz.λy.y
1 := λz.λy.zy
2 := λz.λy.z(zy)
. . .
n := λz.λy.zny

9



where zny denotes z(z(. . . (zy) . . .)) where z occurs n times.
With simple types it is possible to type all numerals with the same type:

(X → X︸ ︷︷ ︸
for z

) → X︸︷︷︸
y

→ X

For instance, the derivation for 2 is (we write XX for X → X):

z : XX ⊢⊢⊢z : XX
ax

z : XX ⊢⊢⊢z : XX
ax

y : X ⊢⊢⊢y : X
ax

z : XX , y : X ⊢⊢⊢zy : X
app

z : XX , y : X ⊢⊢⊢z(zy) : X
app

z : XX ⊢⊢⊢λy.z(zy) : X → X
fun

⊢⊢⊢λz.λy.z(zy) : XX → X → X
fun

Similarly, with set types there is a single set type for numerals:

{{X} → X}︸ ︷︷ ︸
for z

→ {X}︸︷︷︸
y

→ X

Whose derivation for 2, for instance, is a simple decoration with sets of the derivation
with simple types (writing X{X} for {X} → X):

z : {X{X}} ⊢⊢⊢z : X{X}
ax

z : {X{X}} ⊢⊢⊢z : X{X}
ax

y : {X} ⊢⊢⊢y : X
ax

y : {X} ⊢⊢⊢y : {X}
many

z : {X{X}}, y : {X} ⊢⊢⊢zy : X
app

z : {X{X}}, y : {X} ⊢⊢⊢zy : {X}
many

z : {X{X}}, y : {X} ⊢⊢⊢z(zy) : X
app

z : {X{X}} ⊢⊢⊢λy.z(zy) : {X} → X
fun

⊢⊢⊢λz.λy.z(zy) : {X{X}} → {X} → X
fun

Now, with multi types things are different. It is indeed impossible to give the same multi
type to all Church numerals. The typings for the first three are:

0: [ · ]︸︷︷︸
for z

→ [X]︸︷︷︸
y

→ X

1: [[X] → X]︸ ︷︷ ︸
for z

→ [X]︸︷︷︸
y

→ X

2: [[X] → X, [X] → X]︸ ︷︷ ︸
for z

→ [X]︸︷︷︸
y

→ X

Where it is clear that the type has size proportional to the represented number. The
n-th numeral n := λz.λy.zny has type:
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[ [X] → X, . . . , [X] → X︸ ︷︷ ︸
n times, for z

] → [X]︸︷︷︸
y

→ X

The derivation for 2 is as follows (writing X [X] for [X] → X):

z : [X [X]] ⊢⊢⊢z : X [X]
ax

z : [X [X]] ⊢⊢⊢z : X [X]
ax

y : [X] ⊢⊢⊢y : X
ax

y : [X] ⊢⊢⊢y : [X]
many

z : [X [X]], y : [X] ⊢⊢⊢zy : X
app

z : [X [X]], y : [X] ⊢⊢⊢zy : [X]
many

z : [X [X], X [X]], y : [X] ⊢⊢⊢z(zy) : X
app

z : [X [X], X [X]] ⊢⊢⊢λy.z(zy) : [X] → X
fun

⊢⊢⊢λz.λy.z(zy) : [X [X], X [X]] → [X] → X
fun

Note the lower app rule, where the multi-set [X [X], X [X]] is formed.
Bigger types induce bigger derivations. Let’s consider as an example the application

2I of 2 to the identity I. With set types, we compose the obtained derivation for 2 with
a derivation for I = λw.w, as follows:

...

⊢⊢⊢λz.λy.z(zy) : {X{X}} → {X} → X
fun

w : {X} ⊢⊢⊢w : X
ax

⊢⊢⊢λw.w : X{X} fun

⊢⊢⊢(λz.λy.z(zy))(λw.w) : {X} → X
app

With multi types, instead, when typing 2I, the bigger type for z requires two derivations
for the identity:

...

⊢⊢⊢λz.λy.z(zy) : [X [X], X [X]] → [X] → X
fun

w : [X] ⊢⊢⊢w : X
ax

⊢⊢⊢λw.w : X [X]
fun

w : [X] ⊢⊢⊢w : X
ax

⊢⊢⊢λw.w : X [X]
fun

⊢⊢⊢λw.w : [X [X], X [X]]
many

⊢⊢⊢(λz.λy.z(zy))(λw.w) : [X] → X
app

Since the two derivations for I are identical, it may seem that the increment in size
brought by multi types is quite useless, also because it comes with the price of not
having a uniform type for Church numerals. It turns out, however, that such a verbosity
has very nice consequences.

A Question. Once that I was presenting this lecture, a student asked: how is it pos-
sible that all Church numerals have the same set type? Does this imply that all Church
numerals have the same set semantics?
Careful: the fact that two terms are typable with the same type does not say anything

about their set semantics, because the semantics is given by the set of all set types
assignable to a term, and a term in general has an infinity of types. For instance, we
can give a type to 2 that cannot be given to 1. Let Y and Z be two different set types.
Note that 2 is typable with {{Y } → X, {Y } → Z} → {X} → Z while 1 is not, showing
that they do not have the same interpretation into set semantics.
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6 Easy Proof of Correctness

Here we show that multi types enable easy proofs for correctness, restoring the symmetry
between correctness and completeness (completeness of multi types with respect to head
reduction →h can be proved exactly as for set types, via subject expansion).

When we discussed correctness of set types (that is, typability implies termination of
head reduction) we said that the proof is non-trivial because it requires a termination
argument but it is not clear what is decreasing. With multi types, instead, it becomes
very clear what is decreasing: it is the size of the type derivation that decreases at each
head reduction step. We need a definition.

Definition 6.1 (Derivations size). Let π ▷ Γ ⊢⊢⊢t : A be a multi types derivation. The
size |π| of π is the number of ax, fun, app rules in π (all rules but many).

The key point is that one obtains a refinement of subject reduction where the size of
derivations decreases with head β steps.

Proposition 6.2 (Quantitative subject reduction). If t →h u and π ▷ Γ ⊢ t : A then
there exists ρ ▷ Γ ⊢ u : A such that |π| > |ρ|.

As plain subject reduction rests on the substitution lemma, quantitative subject re-
duction rests on a quantitative substitution lemma.

Lemma 6.3 (Quantitative substitution). Let πt ▷Γ, x : M ⊢ t : A and πu ▷∆ ⊢ u : M .
Then there exists πt{x�u} ▷ Γ ⊎∆ ⊢ t{x�u} : A such that |πt{x�u}| = |πt|+ |πu| − |M |,
where |M | is the number of elements in M .

As before, we omit the tedious proof of the lemma, which is by induction on πt. We
only point out that it is the proof of the substitution lemma—and precisely the case
in which πt is an axiom and so t a variable—that requires to exclude occurrences of
rule many from the size of type derivations, because otherwise the quantitative relation
|πt{x�u}| = |πt|+ |πu| − |M | does not hold.

Exercise : prove quantitative subject reduction (Proposition 6.2) using the lemma
(solution in the Appendix).

Now, we can easily prove correctness for multi types.

Theorem 6.4 (Correctness). Let π ▷ Γ ⊢ t : A be a multi type derivation. Then t is
head normalizable.

Proof. By induction on |π| and case analysis on whether t is head normal. If t is head
normal then t is head normalizable. If t →h u then by quantitative subject reduction
(Proposition 6.2) there is ρ ▷Γ ⊢ u : A such that |π| > |ρ|. By i.h., u is head normalizable.
Then so is t.

12



No Easy Proofs with Set Types. It is essential to stress that the reasoning used for
correctness is impossible with set types. We can explain why, by resorting to our example
with Church numerals.
Consider the step nI →h λy.Iny. With set types, the derivation πn for nI has only

one sub derivation πn
I for I while the derivation ρn for the reduct λy.Iny has n copies of

πI. Now, ρn has also something less than πn: the app and fun rule typing the reduced
redex are removed, and also the copies of I replace the n axioms for z (in the notation
used before to define n), which have then been removed. It is easy to see, however, that
starting from n ≥ 5 one has |ρn| > |πn|, that is, the copies of I add more rules to the
derivation than those that are removed by the reduction step, showing that quantitative
subject reduction does not hold with set types.

7 Exact Bounds

The proof of correctness given in the previous section actually proves a finer statement
of quantitative correctness:

Quantitative correctness: let π ▷Γ ⊢ t : A be a multi type derivation. Then t →n
h u

with u head normal and n ≤ π.

We have seen in previous lectures that the number of weak head β-steps is a reasonable
cost model, and along the same lines it is possible to show that also the number of head
β-steps is a reasonable cost model.

Quantitative correctness then states that multi type derivations bound the cost model,
therefore providing complexity bounds. It is natural to wonder whether the inequality
in the bound can become an equality. Said otherwise, do multi type derivations capture
time? The answer is both yes and no: they do capture time, but to see it we have to
refine 3 aspects of our study, because with the current definitions the inequality cannot
be an equality.

Weak Evaluation. For the sake of simplicity, from now one we put ourselves in the
slightly simpler setting of weak head reduction →wh, forbidding evaluation under ab-
straction. At the level of types, it means that we consider also the following additional
typing rule:

⊢⊢⊢λx.t : X fun-ax

which is also counted for the size |π| of a type derivation. With this additional rule, the
multi type system characterizes termination of →wh.

Refining the Measures. A first reason for the gap between the size of the derivation
and the number of steps is that the derivation accounts also for the size of the normal
form, not just the number of steps. To be precise, the derivation accounts for part of
the normal form. The type system being geared towards weak head reduction, its type

13



derivations can measure only the parts of normal forms that are inspected or produced
by weak head reduction, that is, it ignores abstractions.
Therefore, we introduce the following notion of weak head size, counting the number

of applications of the left branch of syntax tree of the term. Define:

|x|wh := 0 |λx.t|wh := 0 |tu|wh := |t|wh + 1

For now, we can prove that every type derivation for a weak head normal form bounds
its weak head size.

Proposition 7.1. Let t be a weak head normal form. Then |t|wh ≤ |π|, for all derivations
π ▷ Γ ⊢ t : A.

Proof. Exercise .

Now, one can prove that, if π ▷Γ ⊢ t : A, and t →n
wh u with u weak head normal, then

n+ |u|wh ≤ |π|. Bounds are however still not exact, as the quantity |π| is too generous,
we have to refine it.
We define as |π|@ the number of app rules in π. With this definition, we have that at

every →wh step the size of the derivation decreases of exactly 1, that is, we have exact
subject reduction.

Proposition 7.2 (Exact subject reduction). If t →h u and π ▷ Γ ⊢ t : A then there
exists ρ ▷ Γ ⊢ u : A such that |π|@ = |ρ|@ + 1.

The difference with quantitative subject reduction is that the quantitative version
states |π| > |ρ|, while here we have |π|@ = |ρ|@ + 1. The proof is as before, the only
thing that changes is the consideration about the measures and the fact that a slightly
different substitution lemma is used, namely the following one (whose proof is omitted).

Lemma 7.3 (Exact substitution). Let πt ▷ Γ, x : M ⊢ t : A and πu ▷∆ ⊢ u : M . Then
there exists πt{x�u} ▷ Γ ⊎∆ ⊢ t{x�u} : A such that |πt{x�u}|@ = |πt|@ + |πu|@.

With the given measures, we can still show that type derivations bound the size of
weak head normal forms. Moreover, we can show that every normal form has a derivation
capturing exactly its weak head size.

Proposition 7.4. Let t be a weak head normal form.

1. Then |t|wh ≤ |π|@, for all derivations π ▷ Γ ⊢ t : A.

2. Then there exists π ▷ Γ ⊢ t : A such that |t|wh = |π|@.

Proof. Exercise . Hint for point 2: check the proof of Proposition 3.2.

It is now possible to refine subject expansion along the lines of exact subject reduc-
tion, obtaining exact subject expansion, and a proof of exact completness, that is, the
existence of derivation giving exact bounds for every →wh terminating term, that is, for
every typable term.
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Tight Derivations. We proved the existence of a derivation giving exact bounds, but
do all derivation give exact bounds? If not, can we characterize which ones? We now
answer these questions.
First let us show two examples of derivations not giving exact bounds. Consider the

following derivation π:

x : [[ ] → A] ⊢ x : [ ] → A
ax

⊢ y : [ ]
many

x : [[ ] → A] ⊢ xy : A
app

⊢ λx.xy : [[ ] → A] → A
fun

Here we have |π|@ = 1 while |λx.xy|wh = 0. The gap is caused by the fact that π
has typing rules under the normal abstraction, that is, the derivation giving the exact
measure is the smaller one formed by fun-ax only:

⊢ λx.xy : X
fun-ax

Another example is the following derivation ρ:

x : [[X] → X] ⊢ x : [X] → X
ax

y : [[ ] → X] ⊢ y : [ ] → X
ax

⊢ z : [ ]
many

y : [[ ] → X] ⊢ yz : X
app

x : [[X] → X], y : [[ ] → X] ⊢ x(yz) : X
app

Here we have |π|@ = 2 while |x(yz)|wh = 1. The gap is now caused by the fact that there
is a smaller derivation which avoids typing the argument, namely the following one:

x : [[ ] → X] ⊢ x : [ ] → X
ax

⊢ yz : [ ]
many

x : [[ ] → X] ⊢ x(yz) : X
app

whose size is 1, catching |x(yz)|wh.
These examples suggest the following definition, whose aim is to catch minimal deriva-

tions.

Definition 7.5 (Tight types and derivations). A linear type A is tight if

A = X, or

A = [ ] → B and B is tight.

A multi set type M is tight if

M = [ ], or

M = [A] and A is tight.

A derivation π ▷ Γ ⊢ t : A is tight if A = X and the types in Γ are tight.
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We can finally prove that tight derivations give exact bounds. First, we prove that
tight derivations of normal forms give exact bounds.

Proposition 7.6. Let t be a weak head normal form. Then |t|wh = |π|@, for all tight
derivations π ▷ Γ ⊢ t : X. Moreover, there is a unique tight derivation for t.

Proof. The shape of t is either λx.u or xu1 . . . uk. Then there are two cases:

1. t = λx.u: since λx.u has type X, it cannot be typed with a fun rule. Then the
derivation π typing it is made out of a single fun-ax rule, satisfying |t|wh = 0 =
|π|@. Uniqueness holds because there are no choices.

2. t = yt1 . . . tk: then π ▷Γ ⊢ t : X has the structure of k app rules having hereditary
on the left an axiom for y, implying that y ∈ dom(Γ). Since π is tight, the type
Γ(y) of y in Γ is tight, that is, of the form [[ ]n → X] for some n. Since the type
of t is X, we have n = k. Then π has the following shape:

y : [[ ]k → X] ⊢ y : [ ]k → X ⊢ t1 : [ ]
many

y : [[ ]k → X] ⊢ yt1 : [ ]
k−1 → X

app

....
y : [[ ]k → X] ⊢ yt1 . . . tk−1 : [ ] → X ⊢ tk : [ ]

many

y : [[ ]k → X] ⊢ yt1 . . . tk : X
app

which satisfies |t|wh = k = |π|@. Uniqueness holds because there are no choices.

We then use exact subject reduction to extend the result to every typable term, that
is, we obtain exact correctness.

Theorem 7.7 (Exact correctness). Let π ▷ Γ ⊢ t : A be a tight multi type derivation.
Then t →n

wh u with u weak head normal. Moreover, n+ |u|wh = |π|@.

Proof. By induction on |π|@ and case analysis on whether t is weak head normal.

• If t is weak head normal then by |t|wh = |π|@ by Proposition 7.6.

• If t →wh r then by exact subject reduction (Proposition 7.2) there is ρ ▷ Γ ⊢ r : A
such that |π|@ = |ρ|@ + 1. By i.h., r →n

wh u and n+ |u|wh = |ρ|@. Then t →n+1
wh u

and n+ 1 + |u|wh = |ρ|@ + 1 = |π|@.

We have already discussed exact completeness. Then we finally obtain an exact oper-
ational characterization via multi types.

Theorem 7.8 (Exact characterization). A term t is typable with a tight derivation π if
and only if t →n

wh u with u weak head normal. Moreover, n+ |u|wh = |π|@.

8 Understanding Quantitative Bounds

We now try to put the study of bounds of the previous section into larger perspective.
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Minimality and Composability. We strived to characterize minimal derivations, ob-
taining exact bounds. What about non-minimal derivations? Are they of any use?
Types are devices for providing guarantees compositionally. Non-minimal derivations

for a term t provide non-exact bounds for t because they anticipate about further evalua-
tion that shall be triggered by composing t with other terms, that is, with its environment
(careful, here we are not using the word environment with respect to the data structure
of abstract machines).
On the other hand, minimal derivations achieve precise measurements at the cost of

sacrificing essentially all possibilities of composability. From the examples in the previous
section, it is clear that exact bounds are possible only when one types normal abstraction
with X, which is not an arrow type, thus blocking the possibility of the abstraction to
be applied. Similarly, weak head normal terms of the form xt1 . . . tk allow x to have only
the type of a function erasing its arguments.
Therefore, there is a sort of indeterminacy principle: multi types that give exact

bounds prevent interesting compositions, and those that allow interesting compositions
do not give exact bound.

Quantitative Semantics. We saw that type derivations can give exact bounds, and
that their final judgements provide the relational semantics. It is natural to ask whether
bounds can be extracted from the semantics as well, that is, not from type derivations
but from (the types in) judgements.
At first sight, this is impossible, because the semantics is invariant by evaluation and so

it cannot count the number of steps. Being invariant by evaluation, however, means that
essentially it is a description of the normal form. And indeed from the type judgement
one can extract bounds on the size of the normal form only. For, one needs to define
a notion of size |J | for a type judgement J , which is simply given by the number of
occurrences of the arrow → in all the types in J . It is possible to prove the following
bound (proof omitted).

Proposition 8.1 (Judgements bound their own derivations). Let t be a weak head
normal form and π ▷ Γ ⊢ t : A. Then |t|wh ≤ |Γ ⊢ t : A|.

Moreover, for tight derivations we have equality. From the bound, provide exact
bounds for |t|wh, when t is weak head normal.

It is also possible to obtain bounds about evaluation lengths from judgement if one
considers two terms t and u instead of one. The idea is to bound the length of evaluating
tu using the judgments for t and u. This is possible, as shown by de Carvalho [dC07,
dC18], but it requires a further level of technicalities and it is therefore omitted.
The important point here is the fact that there exists a way of lifting the bounding

power of multi types derivations to multi type judgements, that is, to the relational
semantics. This is important because relational semantics can also be defined indepen-
dently of multi types. Therefore, the semantics itself has bounding power, or, equiva-
lently, is quantitative. Multi types are only a handy tool to show it.
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Semantical Time. Summing up, we can bound evaluation lengths and size of normal
forms with both type derivations and the relational semantics. Are these quantitative
aspects related to the time cost model?
We know that the number of weak head steps is a reasonable cost model (we proved

it in lecture 3, via the MAM). But we also know that the gap between the evaluation
length and the size of the normal form can be exponential, this is size explosion: there
are families of terms {tn}n∈N such that tn →n

wh un with un normal and with |tn| = O(n)
and |un| = Ω(2n). This is potentially harmful: it may mean that multi types give
bounds that are too lax from a complexity point of view, even when they do provide
exact bounds, because they bound both the number of steps (which is the cost model)
and the size of the normal form (which may be exponentially bigger).
Fortunately, for the easy case that we studied here this is not possible. Remember that,

to obtain exact bounds, we restricted to the weak head size |t|wh rather than considering
the full size |t| of terms. It turns out that, with the notations above, |un|wh = O(n),
that is, the weak head size does not explose. Thus, the measures given by multi types
for the weak head case are faithful to the cost model. Similar results can be obtained
for the head case.
The case of leftmost reduction, which is strong and computes full normal forms, how-

ever, is subtler. There the notion of size of normal form is the plain one, and size
explosion strikes back. It is possible to obtain exact quantitative characterizations for
leftmost reduction, but the bounds are not informative because of size explosion. It then
becomes necessary to bound separately evaluation lengths and size of normal forms, fol-
lowing the alternative approach to tight derivations showed by Kesner. Unfortunately,
that approach kills the semantical interpretation.
Understanding semantical time is a topic of active research and about which very little

is known.

9 Multi Types and the LSC

Along the lectures, we have seen a number of results about weak head reduction. Namely,

• Partial recursive functions: its relationship to the notion of (un)definedness in
order to correctly represent partial recursive functions;

• Rewriting : it can be characterized at the rewriting level via a factorization theorem;

• Implementation: how to implement it via the MAM, and how to further implement
the MAM in Ocaml;

• Cost model : that its number of steps is a reasonable cost model;

• Types: that its termination is characterized by set and multi types;

• Models: which also induce adequate models;
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• Semantical time: that from multi types derivation we can also measure the cost
model.

Now we use it for a further connection: how to measure the steps of the LSC via multi
types, which shall reveal the meaning of multi sets.

Weak Head Reduction in the LSC. Defining linear weak head reduction requires only
to restrict the grammar of contexts at work in the LSC. We first define call-by-Name
contexts and Lists of substitutions contexts:

N := ⟨ · ⟩ | Nt | N [x�t]
S := ⟨ · ⟩ | S[x�t]

And then redefine the rewriting rules as to be restricted to call-by-name (shortened to
CbN) contexts (the following rules are the cases at top level, which then are also closed
by CbN contexts N⟨⟨ · ⟩⟩, and not by all contexts):

distant Beta S⟨λx.t⟩u →ndb S⟨t[x�u]⟩

CbN linear substitution N⟨⟨x⟩⟩[x�u] →nls N⟨⟨u⟩⟩[x�u]

Finally, we set et →lwh:=→ndb ∪ →nls.

Linear Weak Head Reduction and Multi Types. How can we measure the number
of →lwh steps using multi types? First of all, we have to add a typing rule for explicit
substitutions:

Γ ⊢ u : M ∆, x : M ⊢ t : A

Γ ⊎∆ ⊢ t[x�u] : A
es

Now, for distant beta steps →ndb, we already know the answer, because weak head
reduction →wh and its linear variant →lwh perform the same number of →wh/→ndb

steps, that is, the two kinds of step are in bijection.
For linear substitution steps, instead, we have to change something. Fortunately, the

change is smooth. It is enough to change the measures in a very natural way. For
derivations, one simply counts app and ax rules, defining |π|LSC as the number of app
and ax rules in π. For linear weak head normal forms, one simply counts also variables,
defining:

|x|lwh := 1 |λx.t|lwh := 0 |tu|lwh := |t|lwh + 1

The study of the previous sections then can be smoothly refined, obtaining the following
theorem.

Theorem 9.1 (Exact characterization wrt the LSC). t is typable with a tight derivation
π if and only if t →n

lwh u with u weak head normal. Moreover, n+ |u|lwh = |π|LSC .
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The theorem states that multi types derivations compute exactly as the LSC. This is
remarkable, because there are many different way of specifying the rewriting rules for
explicit substitutions. Out of all of them, counting the number of axioms in derivations,
which is the most natural way to account for the number of micro-step substitutions,
corresponds exactly to the number of linear substitution steps.
Note that for counting steps in the λ-calculus, one has to forget the role of the axioms.

In a sense, then, multi type derivations are more naturally linked to the LSC than to
the λ-calculus.

The Meaning of Multi Sets. The relationship between multi types and the LSC pro-
vides a neat explanation for the multiplicity of multi sets. Consider π ▷ Γ ⊢ λx.t :
M → A. A straightforward induction on type derivations shows that the cardinality
of M is the number of axioms for x in π. The last theorem says that this is also the
number of →nls steps on x in the LSC evaluation of (λx.t)u. Which is also the number
of substitutions transitions ⇝sub on x in the MAM execution of (λx.t)u.
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