Homework: Theories and Trees

March 28, 2024

1 $\mathcal{H}^*\eta = \mathcal{H}^*$

Definition 1.1.

- $\lambda \eta$ is the least λ -theory containing $=_{\eta}$.
- $\mathcal{H}^*\eta$ is the least λ -theory containing \mathcal{H}^* and $\lambda\eta$.

Definition 1.2. A term t is $\beta\eta$ solvable if and only if there exists a context H such that $H\langle t \rangle \rightarrow_{\beta\eta}^{*} \mathsf{I}$.

Theorem 1.3. $\beta\eta$ reduction is confluent.

Lemma 1.4. A term t is solvable if and only if it $\beta\eta$ solvable.

Considering all the facts above, prove that:

Theorem 1.5. $\mathcal{H}^*\eta = \mathcal{H}^*$. *Hint: consider the different cases for which two terms are equated in* $\mathcal{H}^*\eta$.

2 Algebraic properties of approximants

Prove the following considering the equivalence of definitions of $\mathcal{A}(t)$ in Giulio's slides for granted. Beware, in Giulio's slides what we called \leq_{\perp} is written \sqsubseteq , and da(t) is written $\omega(t)$.

Lemma 2.1. The set $\mathcal{A}(t)$ is an ideal w.r.t. \leq_{\perp} :

- 1. $\perp \in \mathcal{A}(t)$.
- 2. If $r, u \in \mathcal{A}(t)$, then $r \sqcup u \in \mathcal{A}(t)$.
- 3. Downward closed: $u \leq_{\perp} r \in \mathcal{A}(t)$ implies $u \in \mathcal{A}(t)$.

Bonus exercise, prove the following:

Proposition 2.2. The two definitions of $\mathcal{A}(t)$ are equivalent.