
Lecture Notes

LMFI Master 2

Proofs and Programs: Part 2

Denotational Semantics

Gabriele Vanoni Jad Issa Manuel Catz

March 13, 2024

Disclaimer: these notes have been taken by students and lightly revised by the teacher. They are not
intended to substitute textbooks or papers. They are mostly intended to give an account of what has
been done in class, with the main definitions. They are not complete, and probably not even sound. We
apologize for mistakes, errors, typos, etc.

1 The λ-Calculus

Given a countable set of variables V, terms and contexts are defined by induction as follows:

Terms t, u ::= x ∈ V
∣∣ λx.t ∣∣ tu

Contexts C ::= ⟨ ⟩
∣∣ λx.C ∣∣ Ct

∣∣ tC
Free and bound variables are defined as usual: λx.t binds x in t. Terms are considered modulo α-
equivalence. Capture-avoiding (meta-level) substitution of u for all the free occurrences of x in t is
written t{x/u}.

2 Denotational semantics

We define a semantics map which interprets lambda terms as J·K : Λ→ D where Λ is the set of lambda
terms and D is some set of interpretations. We would like to interpret certain lambda terms as actual
set-theoretic functions. For example, in a term tu, we would like to interpret JtK ∈ D → D and
JuK ∈ D, but also JtK ∈ D. However, no set satisfies D = DD, for example by a cardinality argument
|DD| ≥ 2|D| > |D|. We introduce some typing to solve that problem.

3 Simple types

Types A,B ::= o
∣∣ A→ B

Γ ⊢ t : A→ B Γ ⊢ u : A
Γ ⊢ u : A

T-@
Γ, x : A ⊢ x : A

T-Var
Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A→ B
T-λ

Simple types have strong normalisation, but weak expressivity, for example, if we use Church numerals,
we can only encode extended polynomials (polynomials and if-then-else). We can still define semantics
for them, as follows.

1

We first define interpretations of types. Fix some set O, and define the following by induction on
types.

JoK = O

JA→ BK = JAK→ JBK

where JAK→ JBK is the set of (set-theoretic) functions from JAK to JBK.
We can then define, D =

⋃
i∈N Di with (Di)i∈N defined inductively by:

D0 = O

Di+1 = Di ∪DDi
i

We now finally define interpretation of terms by induction on the complexity of the term. Given a
function ρ : Var→ D defining the interpretation of free variables, and thus acting as an environment,
we define the following:

JxKρ = ρ(x)

Jλx.t : A→ BKρ =

{
f : JAK→ JBK
f(a) = Jt : BKρ[x←a]=ρ∪{(x,a)}

JtuK = JtKρ(JuKρ)

Example 3.1. Jλx.xKρ = f where f is the function defined by f(a) = JxKρ[x←a]=a, which is indeed the
set-theoretic identity function.

Types are preserved by reduction:

Theorem 3.2 (Subject Reduction). If t→ u and Γ ⊢ t : A, then Γ ⊢ u : A.

We would like to obtain a similar result with expansion instead of reduction, but we have the problem
that expanded forms of a term may not be typable in this type system, for example, (λxλy.y)Ω is not
strongly normalisable (since Ω is not) so it’s not typable, but it can reduce to → λy.y which is typable.

Example 3.3. We still have a major issue in the expressivity of the type system: we can only give one
type to a term. This leads to seemingly innocent, normalising terms that are not typable. For example:
(λx.xx)I → II → I, but (λx.xx) is not typable since it would require x to have type A and A → B
simultaneously. This motivates ‘intersection types’ whereby a term can have multiple types.

4 Strict Intersection Types

Types A ::= a
∣∣ I → A

Intersections I ::= {A1, . . . , An} n ≥ 0

Generic Types G ::= A
∣∣ I

A ∈ I
Γ, x : I ⊢ x : A

T-Var
[Γ ⊢ t : Ai]i∈F
Γ ⊢ t : {Ai}i∈F

T-many

Γ, x : I ⊢ t : A

Γ ⊢ λx.t : I → A
T-λ

Γ ⊢ t : I → A Γ ⊢ u : I
Γ ⊢ u : A

T-@

The system is syntax-directed, meaning that given a judgment Γ ⊢ t : G, there is a unique way to
have possibly obtained the judgment which is clear from the syntax. If G = I, the last rule must have
been T-many, otherwise, if t = λx.t′, the last rule must have been T-λ, if t = x, the last rule must have
been T-Var, and finally, if t = uv, the last rule must have been T-@.

2

Remark 4.1. Given a proof (type inference) π, we indicate that π ends with the judgment J by writing
π ▷ J .

Intersection types also provide weakening, that is, if we have π ▷ Γ ⊢ t : A, then we can also form
π ▷ Γ∆ ⊢ t : A by simply ‘inserting’ ∆ everywhere in the proof. This can be easily proved by induction
on the structure of π.

Theorem 4.2 (Subject reduction (SR)). If Γ ⊢ t : A and t→ u, then Γ ⊢ u : A.

Proof. By induction on evaluation contexts, using the following substitution lemma to handle the base
case.

Lemma 4.3 (Substitution lemma). If Γ, x : I ⊢ t : G and Γ ⊢ u : I, then Γ ⊢ t{x← u} : G.

Proof. The proof goes by induction on type derivations π ▷ Γ ⊢ t : A.

Theorem 4.4 (Subject expansion (SE)). If Γ ⊢ u : A and t→ u, then Γ ⊢ t : A.

Lemma 4.5 (Antisubstitution lemma). If Γ ⊢ t{x← u} : G, then, there exists an intersection type I
such that Γ, x : I ⊢ t : G and Γ ⊢ u : I.

Proof. Again by induction on π ▷ Γ ⊢ t{x← u} with one interesting case, that of t = y ̸= x. In this case,
we can type y, but not x. The solution is to choose I = ∅. So given

A ∈ J
Γ, y : J ⊢ y : A

T-Var

We get I = ∅, Γ ⊢ u : ∅, and Γ, x : ∅, y : J ⊢ y : A.

The key idea behind this and other uses of the empty type is that the empty type is the type of
terms that are erased during evaluation. For example, we can type (λy.x)Ω without having any type for
Ω, by giving Ω : ∅, and erasing it during the reduction (λy.x)Ω→ x.

Proposition 4.6. If t is in head-normal-form (HNF), then there exists Γ, A, π such that π ▷ Γ ⊢ t : A.
In other words, any HNF is typable with some type in some environment.

Recall: t is in HNF when it is of the form λx1 . . . λxn.yt1 . . . tm with y free or one of xi for 1 ≤ i ≤ n
and n,m ≥ 0 (possibly also 0).

Proof. Since t1, · · · , tm may not actually be typable, the idea is to give them types ∅ and give y the
type a. If y is free, add y : a to the environment and you get:

y : a ⊢ t : ∅n → a.

If y = xi, then keep the environment empty and give to t the type:

⊢ t : ∅i−1 → (∅m → a)→ ∅n−i → a.

Note, the exponent here does not mean a product type, but rather what would be the currified
version of that type. So f : A3 → B actually means f : A→ (A→ (A→ B)).

Theorem 4.7 (Completeness theorem). If HN(t) (t is head-normalising), then, ∃π ▷ Γ ⊢ t : A.

Proof. If HN(t), then there exists h in HNF such that t→ h. So there is Γ, A, π, such that π ▷ Γ ⊢ h : A.
By induction on the length of the reduction and by the 1-step subject expansion, we get that Γ ⊢ t : A.

The goal now is to prove the converse, namely, Γ ⊢ t : A =⇒ HN(t). This is done via techniques of
the theme of reducibility (Tait / Girard), realisability, and logical relations.

Definition 4.8 (⊨ – logical relation – semantic entailment).

3

(i) ⊨ t : a iff HN(t).

(ii) ⊨ t : I → A iff for each u such that Γ ⊨ u, we have ⊨ tu : A

(iii) ⊨ t : {A1, · · · , An} iff ∀i,⊨ t : Ai.

We can extend this by Γ on the left of ⊨ as follows: {x1 : I1, · · · , xn : In} ⊨ t : G if and only if, for
all ui such that ⊨ ui : Ii, we have ⊨ t{xi ← u1, · · · , xn ← un} : G

Goal: ⊢ t : A =⇒ ⊨ t : A =⇒ HN(t).

Lemma 4.9 (Neutral terms). For all G, ⊨ xt1 · · · tn : G.

Proof. By induction on G.

• For G = a, xt1 · · · tn is in HNF; therefore, ⊨ xt1 · · · tn : a.

• For G = I → A, let u be such that ⊨ u : I, then consider xt1 · · · tnu. Because the induction is on
the type, not on the number n of terms, we can apply the induction hypothesis with A ≤ I → A
and obtain that ⊨ xt1 · · · tnu : A; therefore, xt1 · · · tn : I → A.

• For G = {A1, · · · , Am}, by induction hypothesis, we have ⊨ xt1 · · · tn : Ai for all i : 1 → m;
therefore, ⊨ t : G.

Proposition 4.10. ⊨ t : A =⇒ HN(t).

Proof. By induction on A.

• ⊨ t : a =⇒ HN(t) by definition.

• ⊨ t : I → A =⇒ ∀u such that ⊨ u : I,HN(tu). Pick u to be any neutral term u0 (see lemma
above), and you get HN(tu0); therefore, HN(t).

Remark 4.11. We used here the standard fact that HN(tu) =⇒ HN(u) without proof.

Lemma 4.12. If t→ u and ⊨ u : A, then ⊨ t : A.

Proof. By induction A.

• ⊨ u : a =⇒ HN(u) =⇒ HN(t) =⇒ ⊨ t : a.

• ⊨ u : I → A implies that for all v such that ⊨ v : I, we have ⊨ uv : A. However, tv → uv; therefore,
by induction hypothesis, ⊨ tv : A. Finally, this was for any v with ⊨ v : I, so, ⊨ t : I → A.

Lemma 4.13 (Fundamental lemma). Γ ⊢ t : G =⇒ Γ ⊨ t : G

Proof. By induction on π ▷ Γ ⊢ t : G.

Proposition 4.14. If Γ ⊨ t : A for some Γ, then ⊨ t : A.

Proof. xi are neutral terms, so ⊨ xi : Ii. Applying the definition of ⊨ extended to Γ with ui = xi, we
have ⊨ t{x1 ← x1, · · · , xn ← xn} : A, so ⊨ t : A.

This last proposition allows us to conclude that Γ ⊢ t : G implies Γ ⊨ t : G which implies ⊨ t : G,
finally implying HN(t).

4

5 λ-models

The goal of this section is to construct models of λ-calculus that somehow express interpretation in
a mathematical way (e.g. set-theoretic functions). There are many definitions possible including the
syntactical and the categorical definitions which are roughly equivalent modulo some choice in the
axioms which are not settled yet in the community. We will use the following syntactical definition.

Definition 5.1 (Applicative structure / magma). An applicative structure (or magma in algebra) is a
tuple (S, ·) where S is a set and · : S → S → S is a binary operation on S.

Definition 5.2 (λ-model). A λ-model is a tuple (D, ·, J·K(·)) where (D, ·) is an applicative structure
and J·K(·) : Λ→ (Var→ D)→ D is an interpretation function such that the following hold:

1. JxKρ = ρ(x).

2. JtuKρ = JtKρ · JuKρ

3. Jλx.tKρ · d = JtKρ[x←d]

4. JtKρ = JtKρ′ if ∀x ∈ FV(t), ρ(x) = ρ′(x). In other words, the interpretation of a term depends only
on the interpretation of the free variables in the environment.

5. (∀d ∈ D, JtKρ[x←d] = JuKρ[x←d]) =⇒ Jλx.tKρ = Jλx.uKρ

This definition is due to Hindley and Longo in 1980.

Definition 5.3 (Term model). We define here the term model of λ-calculus, which interprets terms
as themselves, modulo β-equivalence. Formally, it’s the tuple (D, ·, J·K(·)) such that:

• D = {[t] | t is a λ-term} where [t] = {u | t =β u} is the equivalence class of t modulo β-equivalence.

• [t] · [u] = [tu]

• JtKρ = [t{x1 ← u1, · · · , xn ← un}] with

– For all i, ρ(xi) = [ui]

– FV(t) = {x1, · · · , xn}.

Proposition 5.4. The term model is a λ-model.

Proof. We need to check the properties 1 through 5.

1. If ρ(x) = [u], then JxKρ = [x{x← u}] = [u] = ρ(x)

2. If FV(t) = {x1, · · · , xn}, and FV(u) = {y1, · · · , ym} with ρ(xi) = [ui] and ρ(yi) = [vi] for every
appropriate i, then,

JtKρ · JuKρ = [t{x1 ← u1, · · · , xn ← un}u{y1 ← v1, · · · , ym ← vm}]
= [(tu){x1 ← u1, · · · , xn ← un, y1 ← v1, · · · , ym ← vm}]
= JtuKρ

3. ∀d ∈ D, ∃u ∈ Λ, such that d = [u].

Jλx.tKρ · d = Jλx.tKρ · [u]
= [λx.t{x1 ← u1, · · · , xn ← un}u]
= JtKρ[x←u]

5

4. Let FV(t) = {x1, · · · , xn}, and ρ, ρ′ be two environments such that ∀i, ρ(xi) = ρ′(xi) = [ui]. Then:

JtKρ = [t{x1 ← u1, · · · , xn ← un}]
JtKρ = JtKρ′

5.

Proposition 5.5. For any context C, JtKρ = JuKρ =⇒ JC⟨t⟩Kρ = JC⟨u⟩Kρ

Proof. By induction on contexts

Case C = ⟨⟩ C⟨t⟩ = t so this follows by hypothesis.

Case C = C ′r

JC ′⟨t⟩rKρ = JC ′⟨t⟩Kρ · JrKρ
= JC ′⟨u⟩Kρ · JrKρ
= JC ′⟨u⟩rKρ

Case C = rC ′

JrC ′⟨t⟩Kρ = JrKρ · JC ′⟨t⟩Kρ
= JrKρ · JC ′⟨u⟩Kρ
= JrC ′⟨u⟩Kρ

Case C = λx.C ′ This follows by property 5 and the induction hypothesis.

Lemma 5.6. Jt{x← u}Kρ = JtKρ[x←JuKρ]

Proof. By induction on t.

Case t = x
Jx{x← u}Kρ = JuKρ = JxKρ[x←JuKρ]

Case t = y ≠ x We can assume by α-renaming, that x does not occur free in u. Then, we can write
the following:

Jy{x← u}Kρ = JyKρ = JyKρ[x←JuKρ

Case t = λy.r By the induction hypothesis, we have Jr{x← u}Kρ = JrKρ[x←JuKρ]. We can also assume
that x does not occur free in u so that:

Jr{x← u}Kρ = Jr{x← u}Kρ[x←JuKρ]

This is for any ρ, in particular, for any d ∈ D, we have:

Jr{x← u}Kρ[x←JuKρ][y←d] = JrKρ[x←JuKρ][y←d]

Jλy.r{x← u}Kρ[x←JuKρ] = Jλy.rKρ[x←JuKρ]

J(λy.r){x← u}Kρ[x←JuKρ] = Jλy.rKρ[x←JuKρ]

J(λy.r){x← u}Kρ = Jλy.rKρ[x←JuKρ]

6

Case t = rs

Jrs{x← u}Kρ = Jr{x← u}s{x← u}Kρ
= Jr{x← u}KρJs{x← u}Kρ
= JrKρ[x←JuKρ]JsKρ[x←JuKρ]

= JrsKρ[x←JuKρ]

Proposition 5.7. ∀ρ, if t→ u, then, JtKρ = JuKρ.

Proof. By induction on contexts with the special base case of

J(λx.t)uKρ = Jλx.tKρJuKρ
= JtKρ[x←JuKρ]

= Jt{x← u}Kρ

5.1 Engeler’s model

The term model we have seen so far interprets terms as equivalence classes of terms, so it does not fully
capture the notion of interpretation in a ‘mathematical way’. Other models can do this better, and one
of those models is Engeler’s model, which is an instance of a graph model.

Definition 5.8 (Engeler’s model). We give a presentation of Engeler’s model based on intersection
types. Let A be the set of atomic types A (so no intersection types). Engeler’s model is then defined by:

• D = P(A).

• d·e = {A : ∃I ⊆f e, (I → A) ∈ d}. Mimics the application rule on types:
Γ ⊢ t : I → A Γ ⊢ u : I

Γ ⊢ tu : A
T-@

• JtKρ = {A ∈ A : Γ ⊢ t : A if ρ ⊨ Γ}

where ρ ⊨ Γ if and only if Γ(x) ⊆ ρ(x) for each x ∈ V.

Theorem 5.9. Engeler’s model is a λ-model.

7

