Denotational Models Logique Linéaire et Paradigmes Logiques du Calcul Year 2023, Part 3, Lecture 3

Giulio Manzonetto gmanzone@irif.fr

IRIF — Université Paris Cité

http://www.irif.fr/~gmanzone/

January 28, 2024

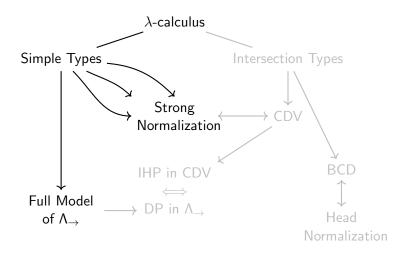
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ = の (() 1/47

- Recap

One year ago in a galaxy far, far away...

<□ > < @ > < ≧ > < ≧ > ≧ > ⑦ < ♡ < 2/47

Where were we?



Where were we?

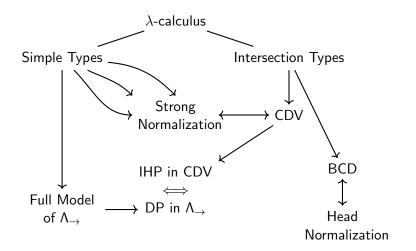


Table of contents

Recap

Introduction

The Böhm Tree Semantics

Filter Models

<□ > < @ > < E > < E > E のQ@_{4/47}

Solvability

A λ -term M is solvable if its closure $\lambda \vec{x} \cdot M$ admits an applicative context $[]P_1 \cdots P_n$ that "send it" to the identity:

$$(\lambda \vec{x}.M)P_1 \cdots P_n =_{\beta} \mathsf{I}$$

Otherwise, we say that M is unsolvable.

Examples

- $K = \lambda xy.x$ is solvable: $KII \rightarrow_{\beta} (\lambda y.I)I \rightarrow_{\beta} I.$
- $M = \lambda x.x I\Omega$ is solvable: $M \mathsf{K} \to_{\beta} \mathsf{KI}\Omega \to_{\beta} (\lambda y.I)\Omega \to_{\beta} I$.
- Ω is unsolvable, since it does not interact with any context []P

$$\Omega P \to_{\beta} \Omega P \to_{\beta} \Omega P' \to_{\beta} \cdots$$

Solvability, equivalently

A λ -term M is solvable iff there are $P_1, \ldots, P_n \in \Lambda$ such that

$$(\lambda \vec{x}.M)P_1 \cdots P_n =_{\beta} H$$

for some hnf H.

Proof. (\Rightarrow) Trivial, since I is an hnf. (\Leftarrow) Assume $(\lambda \vec{x}.M)\vec{P} =_{\beta} H$, for some $\vec{P} \in \Lambda$ and H in hnf. Then H has shape (for some $k \ge 0$ and $1 \le j \le n > 0$)

$$H = \lambda y_1 \dots y_n . y_j M_1 \cdots M_k$$

Define $U^k = \lambda x_1 \cdots x_k$. I and apply it *n* times:

$$(\lambda \vec{x}.M)\vec{P}\,\vec{\mathsf{U}}^k\twoheadrightarrow_\beta H\,\vec{\mathsf{U}}^k\twoheadrightarrow_\beta \mathsf{U}^k\mathsf{M}_1'\cdots\mathsf{M}_k'\twoheadrightarrow_\beta \mathsf{I}$$

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ の � (^6/47

Solvability, equivalently

A λ -term M is solvable iff there are $P_1, \ldots, P_n \in \Lambda$ such that

$$(\lambda \vec{x}.M)P_1 \cdots P_n =_{\beta} H$$

for some hnf H.

Proof. (\Rightarrow) Trivial, since I is an hnf. (\Leftarrow) Assume $(\lambda \vec{x}.M)\vec{P} =_{\beta} H$, for some $\vec{P} \in \Lambda$ and H in hnf. Then H has shape (for some $k \ge 0$ and $1 \le j \le n > 0$)

$$H = \lambda y_1 \dots y_n . y_j M_1 \cdots M_k$$

Define $U^k = \lambda x_1 \cdots x_k$. I and apply it *n* times:

$$(\lambda \vec{x}.M) \vec{P} \vec{U}^k \twoheadrightarrow_{\beta} H \vec{U}^k \twoheadrightarrow_{\beta} U^k M'_1 \cdots M'_k \twoheadrightarrow_{\beta} I$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○ < 6/47</p>

Solvability and head normalization

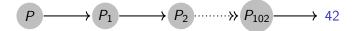
- A solvable *M* is capable of interacting with the context (λ*x*.[])*P* and eventually one the *P_i*'s goes in head position.
- An unsolvable *M* leaves its arguments alone, because it always have its own head redex to reduce.

Theorem (Wadsworth'76)

M is solvable if and only if it is head normalizable.

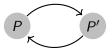
C.P. Wadsworth. The relation between computational and denotational properties for Scott's \mathcal{D}_{∞} models of the λ -calculus. SIAM J. Comput. 5,3 (1976).

Intro	ional Models duction Ivability			
	Classification	Behaviour	Result	
	normalizable	$P \rightarrow P_1 \rightarrow P_2 \twoheadrightarrow P_{99} \rightarrow 42$	completely defined	



< □ > < □ > < □ > < Ξ > < Ξ > Ξ > ○ Q ↔ 8/47

Introd	ional Models duction Ivability			
	Classification	Behaviour	Result	
	normalizable	$P \rightarrow P_1 \rightarrow P_2 \twoheadrightarrow P_{99} \rightarrow 42$	completely defined	
	unsolvable	$P \rightarrow P' \rightarrow P \twoheadrightarrow_{100} P' \rightarrow \cdots$	undefined	



Take $W = (\lambda xy.xyy)$, then $WWW \rightleftharpoons (\lambda x.xWW)W$

- Introduction

Solvability

Classification	Behaviour	Result			
normalizable	$P ightarrow P_1 ightarrow P_2 ightarrow P_{99} ightarrow 42$	completely defined			
unsolvable	$P ightarrow P' ightarrow P ightarrow_{100} P' ightarrow \cdots$	undefined			
solvable	$P ightarrow o_1 P_1 ightarrow o_1 (o_2 P_2)$	stable parts			
	$ \rightarrow o_1(o_2(o_3P_3)) \rightarrow \cdots \rightarrow_{\infty} o_1(o_2(\cdots o_n \cdots) \cdots) $	(infinitary)			
$P \longrightarrow P_1 \longrightarrow P_2 \longrightarrow P_3 \cdots \cdots \gg \pi$					
	3, 1 4	15926535 · · ·			

By collecting all stable parts one constructs a possibly infinite tree.

Denotational Models				
Introduction				
Solvability				

Playing with fixed point combinators

Let

$$Y=\lambda f.\Delta_f\Delta_f,$$

with $\Delta_f = \lambda x.f(xx)$.

> Y is head-normalizing, but we can keep reducing it:

 $\mathsf{Y}\twoheadrightarrow_{\beta}\lambda\mathsf{f}.\mathsf{f}(\Delta_{\mathsf{f}}\Delta_{\mathsf{f}})\twoheadrightarrow_{\beta}\lambda\mathsf{f}.\mathsf{f}(\mathsf{f}(\Delta_{\mathsf{f}}\Delta_{\mathsf{f}}))\twoheadrightarrow_{\beta}\lambda\mathsf{f}.\mathsf{f}^{\mathsf{n}}(\Delta_{\mathsf{f}}\Delta_{\mathsf{f}})\twoheadrightarrow_{\beta}\cdots$

The portion λf.f(f(···)) is a stable part of the output.
YK is not head-normalizing:

 $\mathsf{YK}\twoheadrightarrow_{\beta}\mathsf{K}(\Delta_{\mathsf{K}}\Delta_{\mathsf{K}})\twoheadrightarrow_{\beta}\lambda\mathsf{x}_{1}.\Delta_{\mathsf{K}}\Delta_{\mathsf{K}}\twoheadrightarrow_{\beta}\lambda\mathsf{x}_{1}\ldots\mathsf{x}_{\mathsf{n}}.\Delta_{\mathsf{K}}\Delta_{\mathsf{K}}\twoheadrightarrow_{\beta}\cdots$

The portion $\lambda x_1 \dots x_n$ is a stable part of the output, but it does not contribute to the production of a hnf. YK unsolvable.

Playing with fixed point combinators

Let

$$Y=\lambda f.\Delta_f\Delta_f,$$

with $\Delta_f = \lambda x.f(xx)$.

> Y is head-normalizing, but we can keep reducing it:

 $\mathsf{Y}\twoheadrightarrow_{\beta}\lambda\mathsf{f}.\mathsf{f}(\Delta_{\mathsf{f}}\Delta_{\mathsf{f}})\twoheadrightarrow_{\beta}\lambda\mathsf{f}.\mathsf{f}(\mathsf{f}(\Delta_{\mathsf{f}}\Delta_{\mathsf{f}}))\twoheadrightarrow_{\beta}\lambda\mathsf{f}.\mathsf{f}^{\mathsf{n}}(\Delta_{\mathsf{f}}\Delta_{\mathsf{f}})\twoheadrightarrow_{\beta}\cdots$

The portion $\lambda f.f(f(\cdots))$ is a stable part of the output.

YK is not head-normalizing:

$$\mathsf{YK}\twoheadrightarrow_{\beta}\mathsf{K}(\Delta_{\mathsf{K}}\Delta_{\mathsf{K}})\twoheadrightarrow_{\beta}\lambda\mathsf{x}_{1}.\Delta_{\mathsf{K}}\Delta_{\mathsf{K}}\twoheadrightarrow_{\beta}\lambda\mathsf{x}_{1}\ldots\mathsf{x}_{\mathsf{n}}.\Delta_{\mathsf{K}}\Delta_{\mathsf{K}}\twoheadrightarrow_{\beta}\cdots$$

The portion $\lambda x_1 \dots x_n$ is a stable part of the output, but it does not contribute to the production of a hnf. YK unsolvable.

Solvability

The interest of semantics

Coder

Semanticist

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 10/47

Solvability

The interest of semantics

Coder

Semanticist

 $\mathcal{M} \models P = \bot$

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 10/47

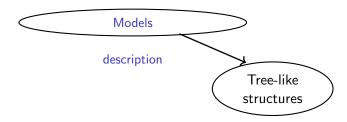
Denotational Models

- The Böhm Tree Semantics

The Böhm Tree Semantics

◆□ ▶ ◆ ⑦ ▶ ◆ 壹 ▶ ◆ 壹 ▶ ○ ♀ ♡ ♀ ♡ 11/47

Syntactic Models



The (possibly infinitary) behaviour of a λ -term is modelled as a (possibly infinite) tree

The type free lambda calculus. (1977). H. Barendregt. Handbook of Mathematical Logic, volume 90 of Studies in Logic and the Foundations of Mathematics.

The Böhm Tree Semantics (Barendregt '77)

Given a program M, its Böhm tree BT(M) is defined by:

- If M is unsolvable, then BT(M) = ⊥, where ⊥ is a constant representing the undefined.
- Otherwise $M \twoheadrightarrow_{\beta} \lambda x_1 \dots x_n . y M_1 \cdots M_k$ and

$$BT(M) = \lambda x_1 \dots x_n . y$$

BT(M₁) ··· BT(M_k)

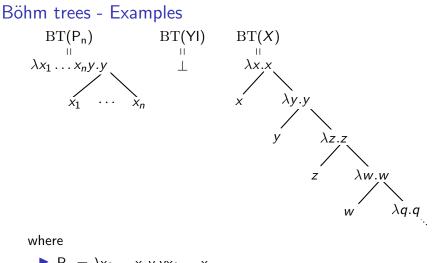
This induces an equivalence on λ -terms:

$$M =_{\mathcal{B}} N \iff \operatorname{BT}(M) = \operatorname{BT}(N)$$

Example BT(Y) \downarrow^{II} $\lambda f.f$ flflf

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ■ ⑦ Q @ 13/47

- The Böhm Tree Semantics



$$P_n = \lambda x_1 \dots x_n y.y x_1 \cdots x_n$$
$$X = Y(\lambda yx.xxy)$$

< □ ▶ < @ ▶ < E ▶ < E ▶ E のQ@_{14/47}

The Böhm tree semantics is "infinitary"

There are λ -terms M, N with the same Böhm tree, that cannot be equated by any "finite" reduction.

1. Take a λ -term *M* satisfying (Its definition? Exercise!):

$$M \twoheadrightarrow_{\beta} \lambda z x. x(Mz)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ① Q @ 15/47

- 2. Take a variable y. Then, $BT(My) = \lambda x.x = \lambda x.x$ $\begin{vmatrix} & & \\ & & \\ & & \\ & & \\ BT(My) = \lambda x.x \end{vmatrix}$
- 3. For $y \neq z$, we have $My \neq_{\beta} Mz$ but BT(My) = BT(Mz).

Digression — Böhm Trees as Coinductive Data-Types

Böhm-like trees are coinductively defined by:

$$T ::=_{\mathsf{co-ind}} \bot \mid \lambda x_1 \dots x_n . y T_1 \cdots T_k$$

Intuition

- Start from the set of all possibly infinite labelles trees.
- Throw away all trees that do not satisfy the above rules.
- ► E.g., $\perp \perp$, infinitely branching trees, $\lambda x_1 . \lambda x_2 . \lambda x_3 . \lambda x_4 ...$

Inductive grammar \cong least fixed pointCo-inductive grammar \cong greatest fixed point

Question: do you see a non λ -definable Böhm-like tree?

Digression — Böhm Trees as normal forms The λ^{∞} -calculus:

$$(\Lambda^{\infty})$$
 $M, N ::=_{\mathsf{co-ind}} \bot \mid x \mid \lambda x.M \mid MN$

with β -reduction and \perp -reductions: $\perp M \rightarrow_{\perp} \perp$ and $\lambda x . \perp \rightarrow_{\perp} \perp$. Reduction sequences may now have transfinite length α (ordinal)

$$M_0 \rightarrow_{\beta\perp} M_1 \rightarrow_{\beta\perp} \cdots M_\omega \rightarrow_{\beta\perp} M_{\omega+1} \rightarrow_{\beta\perp} \cdots \twoheadrightarrow_{\beta\perp} M_\alpha$$

Theorem (Kennaway et Al.)

- 1. The λ^{∞} -calculus is confluent.
- 2. The λ^{∞} -calculus enjoys strong normalization.
- 3. For all finite $M \in \Lambda$, $M \twoheadrightarrow_{\beta \perp} BT(M)$.

Digression — Böhm Trees as normal forms

The λ^{∞} -calculus:

$$(\Lambda^{\infty})$$
 $M, N ::=_{\mathsf{co-ind}} \perp |x| \lambda x.M | MN$

with β -reduction and \perp -reductions: $\perp M \rightarrow_{\perp} \perp$ and $\lambda x . \perp \rightarrow_{\perp} \perp$. Reduction sequences may now have transfinite length α (ordinal)

$$M_0 \rightarrow_{\beta \perp} M_1 \rightarrow_{\beta \perp} \cdots M_\omega \rightarrow_{\beta \perp} M_{\omega+1} \rightarrow_{\beta \perp} \cdots \twoheadrightarrow_{\beta \perp} M_\alpha$$

- R. Kennaway, J.W. Klop, M. R. Sleep, F.-J. de Vries: Infinitary Lambda Calculus. Theor. Comput. Sci. 175(1): 93-125 (1997)
- Lukasz Czajka: A new coinductive confluence proof for infinitary λ-calculus. Log. Methods Comput. Sci. 16(1) (2020)

That was scary... can we go back to induction?

- Finite trees are pieces of "output" that can be obtained in a finite amount of time.
- Böhm trees are naturally ordered, as follows:

<□▶ < @▶ < ≧▶ < ≧▶ ≧ り へ ♡ へ ♡ 18/47

Lambda terms approximations

• The set Λ_{\perp} of λ_{\perp} -terms is defined as follows:

$$P, Q ::= \perp | x | PQ | \lambda x.P$$

lntuively, the constant \perp represents an unsolvable (Ω) .

 \blacktriangleright \rightarrow_{β} extends in the obvious way:

$$(\lambda x.P)Q \rightarrow_{\beta} P[x := Q]$$

The ⊥-reduction is generated by:

$$\perp M \rightarrow_{\perp} \perp, \qquad \lambda x. \perp \rightarrow_{\perp} \perp$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ① Q @ 19/47

Ordering $\lambda \perp$ -terms

The ordering \sqsubseteq on $\lambda \perp$ -terms is generated by:

$$\frac{P \sqsubseteq P'}{\perp \sqsubseteq P} \qquad \frac{P \sqsubseteq P'}{PQ \sqsubseteq P'Q'} \qquad \frac{P \sqsubseteq P'}{\lambda x.P \sqsubseteq \lambda x.P'}$$

The corresponding "sup" $P \sqcup Q$ is inductively given by:

$$\perp \sqcup P = P \sqcup \perp = P (PQ) \sqcup (P'Q') = (P \sqcup P')(Q \sqcup Q') (\lambda x.P) \sqcup (\lambda x.P') = \lambda x.(P \sqcup P')$$

(It is well-defined on "compatible" elements only.)

Finite Approximants

The set \mathcal{A} of finite approximants is defined as follows:

$$(\mathcal{A}) \qquad A, A_i ::= \perp \mid \lambda x_1 \dots x_n . y A_1 \cdots A_k$$

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 21/47

Characterization. For $P \in \Lambda_{\perp}$, the following are equivalent:

- 1. $P \in \mathcal{A}$,
- 2. *P* is normal w.r.t. $\rightarrow_{\beta\perp}$.

Direct approximation

The direct approximant $\omega(M) \in \mathcal{A}$ of $M \in \Lambda$ is inductively defined:

$$\omega(\lambda x_1 \dots x_n . yM_1 \dots M_k) = \lambda x_1 \dots x_n . y\omega(M_1) \dots \omega(M_k),$$

$$\omega(\lambda x_1 \dots x_n . (\lambda y . P)QM_1 \dots M_k) = \bot$$

Lemma. $M \rightarrow_{\beta} N$ implies $\omega(M) \sqsubseteq \omega(N)$. Proof. By structural induction on M. There are two cases:

1. *M* has a head redex. Trivial since $\omega(M) = \bot$.

2. $M = \lambda \vec{x} \cdot y M_1 M_2 \cdots M_k$, $N = \lambda \vec{x} \cdot y M'_1 M_2 \cdots M_k$, with $M_1 \rightarrow_{\beta} M'_1$. From the induction hypothesis $\omega(M_1) \sqsubseteq \omega(M'_1)$, thus the conclusion follows.

Finite approximants of a λ -term

The set of finite approximants of a λ -term M is defined by:

$$\mathcal{A}(M) \stackrel{(1)}{=} \{\omega(N) \mid N =_{\beta} M\}, \text{ equivalently}^*,$$

$$\stackrel{(2)}{=} \{A \in \mathcal{A} \mid \exists N \in \Lambda . M \twoheadrightarrow_{\beta} N \text{ and } A \sqsubseteq N\}$$

$$\neq \{\omega(N) \mid M \twoheadrightarrow_{\beta} N\}$$

* Some work is needed to prove the equivalence $(1) \iff (2)$.

Lemma. If $M =_{\beta} N$ then $\mathcal{A}(M) = \mathcal{A}(N)$.

Trivial with (1), non-trivial with (2). [Hint: use confluence!]

<□▶ < @▶ < ≧▶ < ≧▶ Ξ の Q @ 23/47

Finite approximants of a λ -term

The set of finite approximants of a λ -term M is defined by:

$$\mathcal{A}(M) \stackrel{(1)}{=} \{\omega(N) \mid N =_{\beta} M\}, \text{ equivalently}^*,$$

$$\stackrel{(2)}{=} \{A \in \mathcal{A} \mid \exists N \in \Lambda . M \twoheadrightarrow_{\beta} N \text{ and } A \sqsubseteq N\}$$

$$\neq \{\omega(N) \mid M \twoheadrightarrow_{\beta} N\}$$

* Some work is needed to prove the equivalence $(1) \iff (2)$.

Lemma. If $M =_{\beta} N$ then $\mathcal{A}(M) = \mathcal{A}(N)$.

Trivial with (1), non-trivial with (2). [Hint: use confluence!]

— The Böhm Tree Semantics

Böhm Approximants

Lemma. The set $\mathcal{A}(M)$ is an ideal w.r.t. \sqsubseteq :

- 1. $\perp \in \mathcal{A}(M)$;
- 2. if $A_1, A_2 \in \mathcal{A}(M)$ then $A_1 \sqcup A_2 \in \mathcal{A}(M)$;
- 3. downward closed: $A_1 \sqsubseteq A_2 \in \mathcal{A}(M) \implies A_1 \in \mathcal{A}(M).$

Proof. With Definition 2, (1) and (3) become trivial.

The Böhm Tree Semantics

Böhm Approximants

Lemma. The set $\mathcal{A}(M)$ is an ideal w.r.t. \sqsubseteq :

1. $\perp \in \mathcal{A}(M)$;

2. if $A_1, A_2 \in \mathcal{A}(M)$ then $A_1 \sqcup A_2 \in \mathcal{A}(M)$;

3. downward closed: $A_1 \sqsubseteq A_2 \in \mathcal{A}(M) \implies A_1 \in \mathcal{A}(M).$

Proof. With Definition 2, (1) and (3) become trivial. 2) If $A_1, A_2 \in \mathcal{A}(M)$ then $A_1 = \omega(N_1)$ and $A_2 = \omega(N_2)$ for some

$$N_1 =_{eta} M =_{eta} N_2$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ○ Q @ 24/47

— The Böhm Tree Semantics

Böhm Approximants

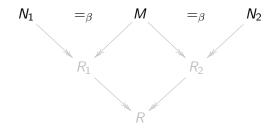
Lemma. The set $\mathcal{A}(M)$ is an ideal w.r.t. \sqsubseteq :

1.
$$\perp \in \mathcal{A}(M)$$
;

2. if $A_1, A_2 \in \mathcal{A}(M)$ then $A_1 \sqcup A_2 \in \mathcal{A}(M)$;

3. downward closed: $A_1 \sqsubseteq A_2 \in \mathcal{A}(M) \implies A_1 \in \mathcal{A}(M).$

Proof. With Definition 2, (1) and (3) become trivial. 2) If $A_1, A_2 \in \mathcal{A}(M)$ then $A_1 = \omega(N_1)$ and $A_2 = \omega(N_2)$ for some



Conclude since direct approximants increase along reduction.

— The Böhm Tree Semantics

Böhm Approximants

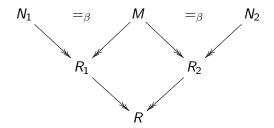
Lemma. The set $\mathcal{A}(M)$ is an ideal w.r.t. \sqsubseteq :

1.
$$\perp \in \mathcal{A}(M)$$
;

2. if $A_1, A_2 \in \mathcal{A}(M)$ then $A_1 \sqcup A_2 \in \mathcal{A}(M)$;

3. downward closed: $A_1 \sqsubseteq A_2 \in \mathcal{A}(M) \implies A_1 \in \mathcal{A}(M).$

Proof. With Definition 2, (1) and (3) become trivial. 2) If $A_1, A_2 \in \mathcal{A}(M)$ then $A_1 = \omega(N_1)$ and $A_2 = \omega(N_2)$ for some



Conclude since direct approximants increase along reduction. \Box

The Syntactic Approximation Theorem

For all $M \in \Lambda$, BT(Y) $\operatorname{BT}(M) = | \mathcal{A}(M)$ $\lambda f_{i}f$ $\blacktriangleright \mathcal{A}(\Omega) = \{\bot\}, \text{ for } \Omega = (\lambda x.xx)(\lambda x.xx),$ $\blacktriangleright \mathcal{A}(\mathbf{Y}) = \{ \bot, \}$ $\lambda f.f \perp$, $\lambda f.f(f\perp),$ $\lambda f.f(f(f\perp)),\ldots,$ $\lambda f. f^n(\perp), \ldots \}$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ▶ ■ ⑦ Q @ 25/47

For all
$$M \in \Lambda$$
,

$$BT(M) = \bigsqcup \mathcal{A}(M)$$

$$U$$

$$U$$

$$L$$
Examples:

$$A(\Omega) = \{\bot\}, \text{ for } \Omega = (\lambda x.xx)(\lambda x.xx),$$

$$A(Y) = \{ \bot, \\ \lambda f.f(\bot, \\ \lambda f.f(f\bot), \\ \lambda f.f(f(\bot)), \dots, \\ \lambda f.f'(\bot, \dots) \}$$

◆□▶ < @▶ < E▶ < E▶ E のQ@25/47</p>

For all
$$M \in \Lambda$$
,

$$BT(M) = \bigsqcup \mathcal{A}(M)$$

$$BT(M) = \bigsqcup \mathcal{A}(M)$$

$$\overset{W}{}_{II}$$

$$\lambda f.f$$
Examples:

$$\mathcal{A}(\Omega) = \{\bot\}, \text{ for } \Omega = (\lambda x.xx)(\lambda x.xx),$$

$$\downarrow$$

$$\mathcal{A}(Y) = \{ \bot, \\ \lambda f.f \bot, \\ \lambda f.f(f \bot), \\ \lambda f.f(f(\bot)), \dots, \\ \lambda f.f(f(\bot)), \dots \}$$

↓□▶ < @▶ < ≧▶ < ≧▶ ≧ </p>

For all
$$M \in \Lambda$$
,

$$BT(M) = \bigsqcup \mathcal{A}(M)$$

$$II$$

$$\lambda f.f$$
Examples:

$$A(\Omega) = \{\bot\}, \text{ for } \Omega = (\lambda x.xx)(\lambda x.xx),$$

$$A(Y) = \{ \bot, \\ \lambda f.f(f\bot), \\ \lambda f.f(f\bot), \\ \lambda f.f(f(\bot)), \dots, \\ \lambda f.f^n(\bot), \dots \}$$
Example BT(Y)
$$I$$

$$\lambda f.f$$

◆□▶ < @▶ < E▶ < E▶ E のQ@25/47</p>

For all
$$M \in \Lambda$$
,

$$BT(M) = \bigsqcup \mathcal{A}(M)$$

$$H = \bigsqcup$$

↓□▶ ↓ @▶ ↓ ≧▶ ↓ ≧▶ ↓ ≧ ∽ ९ ♀ 25/47

For all
$$M \in \Lambda$$
,Example
BT(M) = $\square \mathcal{A}(M)$ BT(Y)
II
 $\lambda f.f$ $BT(M) = \square \mathcal{A}(M)$ $\lambda f.f$ Examples: I
 $\Lambda(\Omega) = \{\bot\}, \text{ for } \Omega = (\lambda x.xx)(\lambda x.xx),$ f
 f
 $\Lambda f.f \bot,$
 $\lambda f.f(f \bot),$
 $\lambda f.f(f(\bot)), \dots,$
 $\lambda f.f(f(f \bot)), \dots,$
 $\lambda f.f(n(\bot), \dots \}$

↓□▶ ↓ @▶ ↓ ≧▶ ↓ ≧▶ ↓ ≧ ∽ ९ ♀ 25/47

For all
$$M \in \Lambda$$
,Example
BT(M) = $\square \mathcal{A}(M)$ BT(Y)
 Π
 $\lambda f.f$ Examples: \downarrow
 $\Lambda(\Omega) = \{\bot\}$, for $\Omega = (\lambda x.xx)(\lambda x.xx)$, \downarrow
f
 $\Lambda(Y) = \{ \bot, \\ \lambda f.f(\bot, \\ \lambda f.f(f\bot), \\ \lambda f.f(f(\bot)), \dots, \\ \lambda f.f^n(\bot), \dots \}$ \downarrow
f
t
f
 \downarrow

↓□▶ ↓ @▶ ↓ ≧▶ ↓ ≧▶ ↓ ≧ ∽ ९ ♀ 25/47

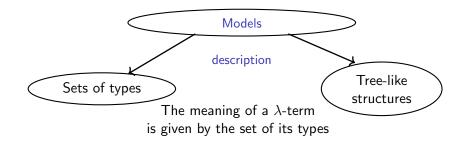
Denotational Models

Filter Models

Filter Models

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q @_{26/47}

Denotational Models



A filter λ-model and the completeness of type assignment.
 H. Barendregt, M. Coppo, M. Dezani-Ciancaglini.
 J. Symb. Log. 48(4): 931-940 (1983)

BCD Types:

$$\begin{array}{ll} \mathbb{A}_{\omega}: & \omega, \alpha, \beta, \dots & \text{countable set of atoms} \\ \mathbb{T}_{\wedge}: & \sigma, \tau ::= \omega \mid \alpha \mid \sigma \to \tau \mid \sigma \wedge \tau & \text{intersection types} \end{array}$$

Derivation Rules:

$$\begin{array}{ll} x_{1}:\sigma_{1},\ldots,x_{n}:\sigma_{n}\vdash_{\wedge}x_{i}:\sigma_{i} \quad (ax) & \Gamma\vdash_{\wedge}M:\omega \quad (U) \\ \\ \frac{\Gamma\vdash_{\wedge}M:\tau \rightarrow \sigma \quad \Gamma\vdash_{\wedge}N:\tau}{\Gamma\vdash_{\wedge}MN:\sigma} \quad (\rightarrow_{E}) & \frac{\Gamma,x:\sigma\vdash_{\wedge}M:\tau}{\Gamma\vdash_{\wedge}\lambda x.M:\sigma \rightarrow \tau} \quad (\rightarrow_{I}) \\ \\ \frac{\Gamma\vdash_{\wedge}M:\sigma \quad \Gamma\vdash_{\wedge}M:\tau}{\Gamma\vdash_{\wedge}M:\sigma \wedge \tau} \quad (\wedge_{I}) & \frac{\Gamma\vdash_{\wedge}M:\sigma \quad \sigma \leq \tau}{\Gamma\vdash_{\wedge}M:\tau} \quad (\leq) \end{array}$$

Subtyping:

Filters of types

We study the collection

$$\mathcal{F} = \{ \mathcal{F} \subseteq \mathbb{T}_{\wedge} \mid \mathcal{F} \text{ is a filter of types } \}$$

A subset F ⊆ T_Λ is a filter of types if:
1. ω ∈ F,
2. σ, τ ∈ F implies σ ∧ τ ∈ F,
3. σ ∈ F and σ ≤ τ imply τ ∈ F.
The principal filter generated by σ ∈ T_Λ is given by:

$$\sigma \uparrow = \{ \tau \in \mathbb{T}_{\wedge} \mid \sigma \leq \tau \} \in \mathcal{F}$$

Interpretation in the filter model BCD

Given $M \in \Lambda$ and a valuation $\rho : \Lambda \to \mathcal{F}$, define the interpretation of M w.r.t. ρ by induction:

$$\begin{split} \llbracket x \rrbracket_{\rho}^{\mathcal{F}} &= \rho(x) \\ \llbracket \lambda x.M \rrbracket_{\rho}^{\mathcal{F}} &= \{ \sigma \to \tau \mid \tau \in \llbracket M \rrbracket_{\rho[x:=\sigma\uparrow]}^{\mathcal{F}} \} \uparrow \\ \llbracket MN \rrbracket_{\rho}^{\mathcal{F}} &= \{ \tau \mid \exists \sigma \in \llbracket N \rrbracket_{\rho}^{\mathcal{F}} . \sigma \to \tau \in \llbracket M \rrbracket_{\rho}^{\mathcal{F}} \} \end{split}$$

Characterization. For $M \in \Lambda$, we have

$$\llbracket M \rrbracket_{\rho}^{\mathcal{F}} = \{ \sigma \in \mathbb{T}_{\wedge} \mid \Gamma \vdash_{\wedge} M : \sigma \}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の≪©30/47

where $\rho(x) = \tau \uparrow$, for all $x : \tau \in \Gamma$.

Interpretation in the filter model BCD

Given $M \in \Lambda$ and a valuation $\rho : \Lambda \to \mathcal{F}$, define the interpretation of M w.r.t. ρ by induction:

$$\begin{split} \llbracket x \rrbracket_{\rho}^{\mathcal{F}} &= \rho(x) \\ \llbracket \lambda x.M \rrbracket_{\rho}^{\mathcal{F}} &= \{ \sigma \to \tau \mid \tau \in \llbracket M \rrbracket_{\rho[x:=\sigma\uparrow]}^{\mathcal{F}} \} \uparrow \\ \llbracket MN \rrbracket_{\rho}^{\mathcal{F}} &= \{ \tau \mid \exists \sigma \in \llbracket N \rrbracket_{\rho}^{\mathcal{F}} . \sigma \to \tau \in \llbracket M \rrbracket_{\rho}^{\mathcal{F}} \} \end{split}$$

Characterization. For $M \in \Lambda$, we have

$$\llbracket M \rrbracket_{\rho}^{\mathcal{F}} = \{ \sigma \in \mathbb{T}_{\wedge} \mid \Gamma \vdash_{\wedge} M : \sigma \}$$

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 30/47

where $\rho(x) = \tau \uparrow$, for all $x : \tau \in \Gamma$.

Interpretation - examples

Remark. If *M* is closed, then $\forall \rho, \rho' . \llbracket M \rrbracket_{\rho} = \llbracket M \rrbracket_{\rho'}$ (forget the ρ !).

Exemples:

▶
$$\llbracket \Omega \rrbracket = \{ \sigma \mid \sigma \simeq \omega \}$$
 (since $\vdash_{\wedge} \Omega : \omega)$
▶ $\llbracket I \rrbracket = \{ \sigma \rightarrow \sigma \mid \sigma \in \mathbb{T}_{\wedge} \} \uparrow$
▶ $\llbracket \lambda f.f \Omega \rrbracket = \{ (\omega \rightarrow \sigma) \rightarrow \sigma \mid \sigma \in \mathbb{T}_{\wedge} \} \uparrow$
▶ $\llbracket \lambda x.xx \rrbracket = \{ (\sigma \land (\sigma \rightarrow \tau)) \rightarrow \tau \mid \sigma, \tau \in \mathbb{T}_{\wedge} \} \uparrow$
▶ $\llbracket K \rrbracket = \{ \sigma \rightarrow \tau \rightarrow \sigma \mid \sigma, \tau \in \mathbb{T}_{\wedge} \} \uparrow$
▶ Spoiler alert. For all *U* unsolvable, we have $(\forall \rho)$:

$$\llbracket U \rrbracket_{\rho} = \{ \sigma \mid \sigma \simeq \omega \}$$

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @_{31/47}

The theory induced by the model

Every model induces a notion of equality between λ -terms:

$$\mathcal{F} \models M = N \text{ if and only if } \forall \rho . \llbracket M \rrbracket_{\rho} = \llbracket N \rrbracket_{\rho}$$

Main properties

Soundness:

$$M =_{\beta} N \quad \Rightarrow \quad \mathcal{F} \models M = N$$

(By the characterization + SR + SE)

Contextuality:

$$\mathcal{F} \models M = M' \quad \Rightarrow \quad \mathcal{F} \models \lambda x.M = \lambda x.M'$$
$$\mathcal{F} \models M = M' \text{ and } \mathcal{F} \models N = N' \quad \Rightarrow \quad \mathcal{F} \models MN = M'N'$$

The theory induced by the model

Every model induces a notion of equality between λ -terms:

$$\mathcal{F} \models M = N \text{ if and only if } \forall \rho . \llbracket M \rrbracket_{\rho} = \llbracket N \rrbracket_{\rho}$$

Main properties

Soundness:

$$M =_{\beta} N \quad \Rightarrow \quad \mathcal{F} \models M = N$$

(By the characterization + SR + SE)

Contextuality:

.

$$\mathcal{F} \models M = M' \quad \Rightarrow \quad \mathcal{F} \models \lambda x.M = \lambda x.M'$$
$$\mathcal{F} \models M = M' \text{ and } \mathcal{F} \models N = N' \quad \Rightarrow \quad \mathcal{F} \models MN = M'N'$$

▲□▶ < @▶ < E▶ < E▶ E のへで32/47</p>

Lambda terms sharing the same interpretation

Examples:

$$\blacktriangleright \mathcal{F} \models \mathsf{KI}\Omega = \mathsf{I}, \text{ as } \mathsf{KI}\Omega =_{\beta} \mathsf{I}.$$

• $\mathcal{F} \models \Omega = \mathsf{YI}$, as they are both unsolvable. Thus:

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへで33/47

•
$$\mathcal{F} \models \lambda x. x \Omega = \lambda x. x$$
(YI), by contextuality.

▶ For all fpc's *Z*, we have $\mathcal{F} \models Z = Y$.

Interpreting $\lambda \perp$ -terms

We can extend the type system BCD to Λ_{\perp} by adding this rule:

 $\frac{1}{\Gamma\vdash_{\wedge}\perp:\omega} (\bot)$

And therefore the interpretation of $\lambda \perp$ -terms:

$$\llbracket \bot \rrbracket_{\rho} = \{ \sigma \mid \sigma \simeq \omega \}$$

Everything works fine because \perp and Ω have the same properties.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで34/47

Typing the direct approximant

Lemma. For all $M \in \Lambda$:

$$\Gamma \vdash \omega(M) : \sigma \quad \Rightarrow \quad \Gamma \vdash M : \sigma$$

Proof. By induction on a derivation of $\Gamma \vdash \omega(M) : \sigma$. Case $\omega(M) = \bot$. Then $\sigma \simeq \omega$, whence $\Gamma \vdash_{\wedge} M : \omega$. Case $\omega(M) = y\omega(M_1)\cdots\omega(M_k)$, since $M = yM_1\cdots M_k$. By Inversion Lemma II, applied k times, we get:

$$\Gamma \vdash_{\wedge} y : \tau_1 \to \cdots \to \tau_k \to \sigma$$

$$\Gamma \vdash_{\wedge} \omega(M_1) : \tau_1 \quad \cdots \quad \Gamma \vdash_{\wedge} \omega(M_k) : \tau_k.$$

By IH, we get $\Gamma \vdash_{\wedge} M_i : \tau_i$, from which $\Gamma \vdash_{\wedge} yM_1 \cdots M_k : \sigma$ follows.

To be continued... < □ > < @ > < \E > < \E > \E → \C35/47 Typing the direct approximant Lemma. For all $M \in \Lambda$:

$$\Gamma \vdash \omega(M) : \sigma \quad \Rightarrow \quad \Gamma \vdash M : \sigma$$

Proof. Case $\omega(M) = \lambda x.\omega(M')$, with $M = \lambda x.M'$. By Inversion Lemma I, there are $\tau_1, \ldots, \tau_k, \gamma_1, \ldots, \gamma_k \in \mathbb{T}_{\wedge}$ such that

$$(\tau_1 \to \gamma_1) \land \dots \land (\tau_k \to \gamma_k) \leq \sigma \forall i \in \{1, \dots, k\} . \Gamma, x : \tau_i \vdash_{\land} \omega(M') : \gamma_i$$

By IH, we get $\Gamma, x : \tau_i \vdash_{\wedge} M' : \gamma_i$. We conclude:

$$\frac{\Gamma \vdash_{\wedge} \lambda x.M' : \tau_{1} \to \gamma_{1} \cdots \Gamma \vdash_{\wedge} \lambda x.M' : \tau_{k} \to \gamma_{k}}{\Gamma \vdash_{\wedge} \lambda x.M' : \wedge_{i}(\tau_{i} \to \gamma_{i})} \wedge_{i}(\tau_{i} \to \gamma_{i}) \leq \sigma}{\Gamma \vdash_{\wedge} \lambda x.M : \sigma}$$

<□ ▶ < @ ▶ < E ▶ < E ▶ E のQ@36/47

Semantic Approximation Theorem

Semantic Approximation Theorem. For $M \in \Lambda$.

$$\llbracket M \rrbracket_{\rho} = \bigcup \{\llbracket A \rrbracket_{\rho} \mid A \in \mathcal{A}(M)\}$$

This is what we are going to prove.

Corollary. If BT(M) = BT(N) then $\mathcal{F} \models M = N$.

Proof. Assume BT(M) = BT(N). Then also $\mathcal{A}(M) = \mathcal{A}(N)$.

$$\begin{split} \llbracket M \rrbracket_{\rho} &= \bigcup_{A \in \mathcal{A}(M)} \llbracket A \rrbracket_{\rho}, \quad \text{by Approximation Theorem,} \\ & \bigcup_{A \in \mathcal{A}(N)} \llbracket A \rrbracket_{\rho} = \llbracket N \rrbracket_{\rho} \quad \Box \end{split}$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ■ の Q (*37/47)

Semantic Approximation Theorem

Semantic Approximation Theorem. For $M \in \Lambda$.

$$\llbracket M \rrbracket_{\rho} = \bigcup \{\llbracket A \rrbracket_{\rho} \mid A \in \mathcal{A}(M)\}$$

This is what we are going to prove.

Corollary. If BT(M) = BT(N) then $\mathcal{F} \models M = N$. Proof. Assume BT(M) = BT(N). Then also $\mathcal{A}(M) = \mathcal{A}(N)$.

$$\llbracket M \rrbracket_{\rho} = \bigcup_{A \in \mathcal{A}(M)} \llbracket A \rrbracket_{\rho}, \quad \text{by Approximation Theorem,} \\ \bigcup_{A \in \mathcal{A}(N)} \llbracket A \rrbracket_{\rho} = \llbracket N \rrbracket_{\rho} \qquad \Box$$

Logical Approximation Theorem

Theorem

$$\Gamma \vdash_{\wedge} M : \sigma \iff \exists P \in \mathcal{A}(M) . \Gamma \vdash_{\wedge} P : \sigma$$

Proof. (\Leftarrow) Assume $\Gamma \vdash_{\wedge} P : \sigma$, for some $P \in \mathcal{A}(M)$.

- ▶ By Definition 1, there exists $N =_{\beta} M$ such that $P = \omega(N)$.
- We have seen that $\Gamma \vdash_{\wedge} \omega(N) : \sigma$ implies $\Gamma \vdash_{\wedge} N : \sigma$.
- By SR+SE+confluence, typing is invariant under $=_{\beta}$.
- Conclude $\Gamma \vdash_{\wedge} M : \sigma$.
- (\Rightarrow) Mmm... it does not seem so easy. Ideas?

Of course!

The property that we want for the λ -terms of type σ in Γ :

$$\mathcal{P}_{\Gamma}(\sigma) = \{ M \in \Lambda \mid \exists A \in \mathcal{A}(M) \, . \, \Gamma \vdash_{\wedge} A : \sigma \}$$

Define the interpretation of $\sigma \in \mathbb{T}_{\wedge}$ in Γ as follows:

$$\begin{aligned} |\alpha|_{\Gamma} &= \mathcal{P}_{\Gamma}(\alpha), \text{ for } \alpha \in \mathbb{A}_{\omega}, \\ |\sigma \to \tau|_{\Gamma} &= \{M \mid \forall \Gamma', \forall N \in |\sigma|_{\Gamma'} . MN \in |\tau|_{\Gamma \wedge \Gamma'}\} \\ |\sigma \wedge \tau|_{\Gamma} &= |\sigma|_{\Gamma} \cap |\tau|_{\Gamma} \end{aligned}$$

Remark. Recall that $\bot \in \mathcal{A}(M)$ and $\Gamma \vdash_{\wedge} M : \omega$, for every M. So

 $\sigma \simeq \omega$ implies $|\sigma|_{\Gamma} = \Lambda$

In particular $|\sigma \wedge \omega|_{\Gamma} = |\sigma|_{\Gamma}$, which is consistent with $\sigma \wedge \omega \simeq \sigma$.

Of course!

The property that we want for the λ -terms of type σ in Γ :

$$\mathcal{P}_{\Gamma}(\sigma) = \{ M \in \Lambda \mid \exists A \in \mathcal{A}(M) \, . \, \Gamma \vdash_{\wedge} A : \sigma \}$$

Define the interpretation of $\sigma \in \mathbb{T}_{\wedge}$ in Γ as follows:

$$\begin{aligned} |\alpha|_{\Gamma} &= \mathcal{P}_{\Gamma}(\alpha), \text{ for } \alpha \in \mathbb{A}_{\omega}, \\ |\sigma \to \tau|_{\Gamma} &= \bigcap_{\Gamma'} \left(|\sigma|_{\Gamma'} \Rightarrow |\tau|_{\Gamma \wedge \Gamma'} \right) \\ |\sigma \wedge \tau|_{\Gamma} &= |\sigma|_{\Gamma} \cap |\tau|_{\Gamma} \end{aligned}$$

Remark. Recall that $\bot \in \mathcal{A}(M)$ and $\Gamma \vdash_{\wedge} M : \omega$, for every M. So

 $\sigma \simeq \omega$ implies $|\sigma|_{\Gamma} = \Lambda$

In particular $|\sigma \wedge \omega|_{\Gamma} = |\sigma|_{\Gamma}$, which is consistent with $\sigma \wedge \omega \simeq \sigma$.

Two steps

We need to prove that all typable terms are approximable:

$$\Gamma \vdash_{\wedge} M : \sigma \quad \Rightarrow \quad M \in \mathcal{P}_{\Gamma}(\sigma)$$

The proof is split into 2 steps. Step 1:

$$\Gamma \vdash_{\wedge} M : \sigma \quad \Rightarrow \quad M \in |\sigma|_{\Gamma} \tag{1}$$

Step 2:

$$M \in |\sigma|_{\Gamma} \Rightarrow M \in \mathcal{P}_{\Gamma}(\sigma)$$
 (2)

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ で 40/47

Auxiliary lemmas

Lemma (AUX0). $M \in |\sigma|_{\Gamma}$ and $M =_{\beta} N$ implies $N \in |\sigma|_{\Gamma}$. Proof sketch. By induction on σ .

Lemma (AUX1). For $M \in \Lambda$ and $z \notin FV(M)$, we have:

$$Mz \in \mathcal{P}_{\Gamma, z:\tau}(\sigma) \Rightarrow M \in \mathcal{P}_{\Gamma}(\tau \to \sigma)$$

Proof sketch. Let $P \in \mathcal{A}(Mz)$ such that $\Gamma, z : \tau \vdash_{\wedge} P : \sigma$. By cases on P and M, show that $\exists P' \in \mathcal{A}(M)$ such that $\Gamma \vdash_{\wedge} P' : \tau \to \sigma$.

Lemma (AUX2). $\sigma \leq \tau$ implies $|\sigma|_{\Gamma} \subseteq |\tau|_{\Gamma}$. Proof sketch. By induction on a derivation of $\sigma \leq \tau$.

Main Lemma.

1.
$$xM_1 \cdots M_n \in \mathcal{P}_{\Gamma}(\sigma)$$
 implies $xM_1 \cdots M_n \in |\sigma|_{\Gamma}$.
2. $|\sigma|_{\Gamma} \subseteq \mathcal{P}_{\Gamma}(\sigma)$.

Proof. By simultaneous induction (IH1, IH2 = ind. hyp.) 1. Case $\sigma \simeq \omega$. Trivial since $|\omega|_{\Gamma} = \Lambda$. Case $\sigma = \tau_1 \wedge \tau_2$. Easy. Case $\sigma = \tau_1 \rightarrow \tau_2 ~(\not\simeq \omega)$. Let $x \vec{M} \in \mathcal{P}_{\Gamma}(\sigma)$. Then

$$\exists P \in \mathcal{A}(\mathsf{x} \mathsf{M}_1 \cdots \mathsf{M}_n) \, . \, \mathsf{\Gamma} \vdash_{\wedge} P : \tau_1 \to \tau_2$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ① Q @ 42/47

with $A_i \in \mathcal{A}(M_i)$.

Main Lemma.

1.
$$xM_1 \cdots M_n \in \mathcal{P}_{\Gamma}(\sigma)$$
 implies $xM_1 \cdots M_n \in |\sigma|_{\Gamma}$.
2. $|\sigma|_{\Gamma} \subseteq \mathcal{P}_{\Gamma}(\sigma)$.
Proof. By simultaneous induction (IH1, IH2 = ind. hyp.)
I. Case $\sigma \simeq \omega$. Trivial since $|\omega|_{\Gamma} = \Lambda$.
Case $\sigma = \tau_1 \land \tau_2$. Easy.
Case $\sigma = \tau_1 \rightarrow \tau_2 \ (\not\simeq \omega)$. Let $x\vec{M} \in \mathcal{P}_{\Gamma}(\sigma)$. Then

 $\exists P \in \mathcal{A}(xM_1 \cdots M_n) . \Gamma \vdash_{\wedge} P = xA_1 \cdots A_n : \tau_1 \to \tau_2$

with $A_i \in \mathcal{A}(M_i)$. By IH2, $\forall N \in |\tau_1|_{\Gamma'} \Rightarrow N \in \mathcal{P}_{\Gamma'}(\sigma)$, i.e. $\exists A_{n+1} \in \mathcal{A}(N)$ such that $\Gamma' \vdash_{\wedge} A_{n+1} : \tau_1$.

Main Lemma.

1.
$$xM_1 \cdots M_n \in \mathcal{P}_{\Gamma}(\sigma)$$
 implies $xM_1 \cdots M_n \in |\sigma|_{\Gamma}$.
2. $|\sigma|_{\Gamma} \subseteq \mathcal{P}_{\Gamma}(\sigma)$.
Proof. By simultaneous induction (IH1, IH2 = ind. hyp.)
1. Case $\sigma \simeq \omega$. Trivial since $|\omega|_{\Gamma} = \Lambda$.
Case $\sigma = \tau_1 \wedge \tau_2$. Easy.
Case $\sigma = \tau_1 \rightarrow \tau_2 \ (\not\simeq \omega)$. Let $x\vec{M} \in \mathcal{P}_{\Gamma}(\sigma)$. Then
 $\exists P \in \mathcal{A}(xM_1 \cdots M_n) . \Gamma \vdash_{\Lambda} P = xA_1 \cdots A_n : \tau_1 \rightarrow \tau_2$

with $A_i \in \mathcal{A}(M_i)$. By IH2, $\forall N \in |\tau_1|_{\Gamma'} \Rightarrow N \in \mathcal{P}_{\Gamma'}(\sigma)$, i.e. $\exists A_{n+1} \in \mathcal{A}(N)$ such that $\Gamma' \vdash_{\wedge} A_{n+1} : \tau_1$.

Main Lemma.

1.
$$xM_1 \cdots M_n \in \mathcal{P}_{\Gamma}(\sigma)$$
 implies $xM_1 \cdots M_n \in |\sigma|_{\Gamma}$.
2. $|\sigma|_{\Gamma} \subseteq \mathcal{P}_{\Gamma}(\sigma)$.
Proof. By simultaneous induction (IH1, IH2 = ind. hyp.)
1. Case $\sigma \simeq \omega$. Trivial since $|\omega|_{\Gamma} = \Lambda$.
Case $\sigma = \tau_1 \wedge \tau_2$. Easy.
Case $\sigma = \tau_1 \rightarrow \tau_2 \ (\not\simeq \omega)$. Let $x\vec{M} \in \mathcal{P}_{\Gamma}(\sigma)$. Then

$$\exists P \in \mathcal{A}(xM_1 \cdots M_n) . \ \Gamma \land \Gamma' \vdash_{\land} P = xA_1 \cdots A_n : \tau_1 \to \tau_2$$

with $A_i \in \mathcal{A}(M_i)$. By IH2, $\forall N \in |\tau_1|_{\Gamma'} \Rightarrow N \in \mathcal{P}_{\Gamma'}(\sigma)$, i.e. $\exists A_{n+1} \in \mathcal{A}(N)$ such that $\Gamma \land \Gamma' \vdash_{\land} A_{n+1} : \tau_1$. By (\rightarrow_E) ,

 $\Gamma \wedge \Gamma' \vdash_{\wedge} xA_1 \cdots A_{n+1} : \tau_2 \implies^{\text{IH1}} x \vec{M} N \in |\tau_2|_{\Gamma \wedge \Gamma'} \text{ (conclude)}$

Main Lemma.

1.
$$xM_1 \cdots M_n \in \mathcal{P}_{\Gamma}(\sigma)$$
 implies $xM_1 \cdots M_n \in |\sigma|_{\Gamma}$.
2. $|\sigma|_{\Gamma} \subseteq \mathcal{P}_{\Gamma}(\sigma)$.
Proof. By simultaneous induction (IH1, IH2 = ind. hyp.)
1. Case $\sigma \simeq \omega$. Trivial since $|\omega|_{\Gamma} = \Lambda$.
Case $\sigma = \tau_1 \wedge \tau_2$. Easy.
Case $\sigma = \tau_1 \rightarrow \tau_2 \ (\not\simeq \omega)$. Let $x\vec{M} \in \mathcal{P}_{\Gamma}(\sigma)$. Then
 $\exists P \in \mathcal{A}(xM_1 \cdots M_n) . \Gamma \wedge \Gamma' \vdash_{\Lambda} P = xA_1 \cdots A_n : \tau_1 \rightarrow \tau_2$

with $A_i \in \mathcal{A}(M_i)$. By IH2, $\forall N \in |\tau_1|_{\Gamma'} \Rightarrow N \in \mathcal{P}_{\Gamma'}(\sigma)$, i.e. $\exists A_{n+1} \in \mathcal{A}(N)$ such that $\Gamma \land \Gamma' \vdash_{\land} A_{n+1} : \tau_1$. By (\rightarrow_E) ,

 $\Gamma \wedge \Gamma' \vdash_{\wedge} xA_1 \cdots A_{n+1} : \tau_2 \ \Rightarrow^{\mathrm{IH}1} x \vec{M} N \in |\tau_2|_{\Gamma \wedge \Gamma'} \ (\text{conclude})$

Main Lemma.

1.
$$xM_1 \cdots M_n \in \mathcal{P}_{\Gamma}(\sigma)$$
 implies $xM_1 \cdots M_n \in |\sigma|_{\Gamma}$.
2. $|\sigma|_{\Gamma} \subseteq \mathcal{P}_{\Gamma}(\sigma)$.
Proof. 2. Case $\sigma \simeq \omega$. Trivial since $\mathcal{P}_{\Gamma}(\omega) = \Lambda$.
Case $\sigma = \tau_1 \wedge \tau_2$. By rule (\wedge_I) and IH2.
Case $\sigma = \tau_1 \rightarrow \tau_2$. Take $M \in |\tau_1 \rightarrow \tau_2|_{\Gamma}$ and z a fresh variable.
Since $z \in |\tau_1|_{z:\tau_1}$, by IH1, we have

$$\begin{array}{ccc} M \in |\tau_1 \to \tau_2|_{\Gamma} \text{ and } z \in |\tau_1|_{z:\tau_1} & \Rightarrow & Mz \in |\tau_2|_{\Gamma,z:\tau_2} \\ & (\text{by IH2}) & \Rightarrow & Mz \in \mathcal{P}_{\Gamma,z:\tau_1}(\tau_2) \\ & (\text{AUX1}) & \Rightarrow & M \in \mathcal{P}_{\Gamma}(\tau_1 \to \tau_2) \end{array}$$

<□▶ < @▶ < E▶ < E▶ E の Q @43/47

Step 1 comes later

Main Theorem. Let $M \in \Lambda$, with $FV(M) \subseteq \{x_1, \ldots, x_n\}$. Let $\Gamma = x_1 : \tau_1, \ldots, x_n : \tau_n$ and $\Gamma_1, \ldots, \Gamma_n$ be type environments. For all $N_1 \in |\tau_1|_{\Gamma_1}, \ldots, N_n \in |\tau_n|_{\Gamma_n}$, we have

$$\Gamma \vdash_{\wedge} M : \sigma \quad \Rightarrow \quad M[x_1 := N_1, \dots, x_n := N_n] \in |\sigma|_{\Gamma \wedge \Gamma_1 \wedge \dots \wedge \Gamma_n}$$

Proof. By induction on the derivation of $\Gamma \vdash_{\wedge} M : \sigma$.

We only see this interesting case: $\frac{\Gamma, y : \sigma \vdash_{\wedge} M : \tau}{\Gamma \vdash_{\wedge} \lambda y.M : \sigma \to \tau} (\to_{I})$ By IH, for all $N_{i} \in |\tau_{i}|_{\Gamma_{i}}, X \in |\sigma|_{\Gamma_{n+1}}$ $M[\vec{x} := \vec{N}, y := X] \in |\tau|_{\Gamma \land (\bigwedge_{i=1}^{n+1} \Gamma_{j})}$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ○ Q @ 44/47

Step 1 comes later

Main Theorem. Let $M \in \Lambda$, with $FV(M) \subseteq \{x_1, \ldots, x_n\}$. Let $\Gamma = x_1 : \tau_1, \ldots, x_n : \tau_n$ and $\Gamma_1, \ldots, \Gamma_n$ be type environments. For all $N_1 \in |\tau_1|_{\Gamma_1}, \ldots, N_n \in |\tau_n|_{\Gamma_n}$, we have

$$\Gamma \vdash_{\wedge} M : \sigma \quad \Rightarrow \quad M[x_1 := N_1, \dots, x_n := N_n] \in |\sigma|_{\Gamma \wedge \Gamma_1 \wedge \dots \wedge \Gamma_n}$$

Proof. By induction on the derivation of $\Gamma \vdash_{\wedge} M : \sigma$.

We only see this interesting case: $\frac{\Gamma, y : \sigma \vdash_{\wedge} M : \tau}{\Gamma \vdash_{\wedge} \lambda y . M : \sigma \to \tau} (\to_{I})$ By IH, for all $N_{i} \in |\tau_{i}|_{\Gamma_{i}}, X \in |\sigma|_{\Gamma_{n+1}}$

 $(\lambda y.M[\vec{x} := \vec{N}])X \rightarrow_{\beta} M[\vec{x} := \vec{N}, y := X] \in |\tau|_{\Gamma \land (\bigwedge_{j=1}^{n+1} \Gamma_j)}$ By (AUX0).

Step 1 comes later

Main Theorem. Let $M \in \Lambda$, with $FV(M) \subseteq \{x_1, \ldots, x_n\}$. Let $\Gamma = x_1 : \tau_1, \ldots, x_n : \tau_n$ and $\Gamma_1, \ldots, \Gamma_n$ be type environments. For all $N_1 \in |\tau_1|_{\Gamma_1}, \ldots, N_n \in |\tau_n|_{\Gamma_n}$, we have

$$\Gamma \vdash_{\wedge} M : \sigma \quad \Rightarrow \quad M[x_1 := N_1, \dots, x_n := N_n] \in [\sigma|_{\Gamma \land \Gamma_1 \land \dots \land \Gamma_n}$$

Proof. By induction on the derivation of $\Gamma \vdash_{\wedge} M : \sigma$.

We only see this interesting case: $\frac{\Gamma, y : \sigma \vdash_{\wedge} M : \tau}{\Gamma \vdash_{\wedge} \lambda y.M : \sigma \to \tau} (\to_{I})$ By IH, for all $N_{i} \in |\tau_{i}|_{\Gamma_{i}}, X \in |\sigma|_{\Gamma_{a+1}}$

 $(\lambda y.M[\vec{x} := \vec{N}])X \to_{\beta} M[\vec{x} := \vec{N}, y := X] \in |\tau|_{\Gamma \land (\bigwedge_{j=1}^{n+1} \Gamma_j)}$ By (AUX0). By definition, $\lambda y.M[\vec{x} := \vec{N}] \in |\sigma \to \tau|_{\Gamma \land (\bigwedge_{j=1}^{n} \Gamma_j)}.$ Summing up...

Logical Approximation Theorem. For $M \in \Lambda$.

$$\Gamma \vdash_{\wedge} M : \sigma \iff \exists P \in \mathcal{A}(M) \, . \, \Gamma \vdash_{\wedge} P : \sigma$$

Semantic Approximation Theorem. For $M \in \Lambda$.

$$\llbracket M \rrbracket_{\rho} = \bigcup \{\llbracket A \rrbracket_{\rho} \mid A \in \mathcal{A}(M)\}$$

Corollary. The theory of the filter model BCD includes BT:

 $\mathcal{B} \subseteq \mathrm{Th}(\mathcal{F}^{\mathsf{BCD}})$

<□▶ < @▶ < E▶ < E▶ E のQ@45/47</p>

Bibliography (aka, where should I study?)

Böhm tree semantics: where you want. E.g.
 H. Barendregt. The type free lambda calculus. (1977).

Filter models:

H. Barendregt, W. Dekkers, R. Statman. Lambda Calculus with Types. Perspectives in logic, Cambridge University Press 2013, ISBN 978-0-521-76614-2, pp. I-XXII, 1-833

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで46/47

Approximation theorem:

M. Dezani-Ciancaglini, F. Honsell and Y. Motohama. Approximation Theorems for Intersection Type Systems.

