
Reasonable Time, λ-Calculus, and Linear
Logic

MPRI course
Logique Linéaire et Paradigmes Logiques du Calcul,

Year 2023-24, part 4
Lecture 2

Beniamino Accattoli

March 8, 2025

1 Introducing Reasonable Cost Models

Turing machines (shortened to TMs) are the standard computational theory1 for com-
putational complexity because their cost models are self-evident:

Time: the number of transitions performed during execution;

Space: the maximum number of cells of the tape used during execution.

On TMs, space cannot be greater than time, because using space requires time—we shall
then say that space and time are locked.

In order to study complexity in a different theory T one has to first fix cost models for
T . The basic requirement for cost models is to be reasonable, that is, equivalent to those
of Turing machines. Precisely, a cost model for a computational theory T is reasonable
if there are mutual simulations of T and TMs (or another reasonable theory) working
within:

• for time, a polynomial overhead;

• for space, a linear overhead.

In many cases, the two bounds hold simultaneously for the same simulation, but this is
not a strict requirement. The aim is to ensure that the basic hierarchy of complexity
classes

 L ⊆ P ⊆ PSPACE ⊆ EXP (1)

can be equivalently defined on any reasonable theory, that is, that such classes are robust,
or theory-independent. Note a slight asymmetry: while for time the complexity of the

1The literature usually refers to computational models rather than computational theories. We prefer
to use theory as the word model is overloaded, in particular we want to avoid confusion with cost
model, and also with denotational model.

1

required overhead (polynomial) coincides with the smallest robust time class (P), for
space the smallest robust class is logarithmic (L) and not linear space. In particular, a
simulation within a linear space overhead for logarithmic space implies that one needs
to preserve logarithmic space.

Random access machines (RAMs), which are the theory of reference for modern com-
puters, are reasonable. The notion of reasonable cost model was introduced by Slot and
van Emde Boas in the 1980s [SvEB84, vEB90], while trying to obtain a reasonable space
cost model for RAMs.

Reasonable cost models are used to refine the notion of (in)effectively computable via
an extended thesis, known alternatively as the strong, extended, efficient, modern, or
complexity-theoretic Church(-Turing) thesis, or also as the invariance thesis (reasonable
cost models are also called invariant cost models, as they do not change complexity
classes when changing theory):

All computational theories are reasonable.

The thesis has to be intended as a discrimination principle rather than as a proved fact,
as it helps understanding, adjusting, or rejecting a computational theory depending on
whether it is reasonable or not.

Sub-Polynomial Overhead? It is natural to wonder whether the invariance thesis can
be strengthened, requiring for instance that all theories are correlated by a linear over-
head in time. It turns out that such a requirement is too strong, because simulations
between theories often require a non-linear time overhead. For instance, TMs simulate
RAM with a quadratic time overhead, needed to simulate random access on a sequential
tape. Said differently, sub-polynomial time classes are not robust, which is one of the
reasons why the class P is so relevant.

Cost Models for the λ-Calculus. The theory of interest, here, is the λ-calculus. Since
the inception of computer science Turing machines were considered more effective than
the λ-calculus because the cost models of the λ-calculus are not really evident. More
precisely, there are various natural candidates, but they all seem problematic.

First of all, since the λ-calculus is non-deterministic, one needs to fix a deterministic
(or diamond) notion of evaluation, that is, to fix an evaluation strategy. For the moment,
we want to be agnostic with respect to the strategy, so we assume given an evaluation
strategy →str (think of head, weak head, or leftmost reduction) with its corresponding
notion of normal form nfX(t). Then, we have three candidates for the time cost of a
→str evaluation e : t0 →str t1 →str t2 →str . . . →str tn of length n:

Ink time: the time needed to print out all the terms ti for i ∈ {0, . . . , n};

Abstract time: the number n of →str steps;

Low-level time: the time taken by an abstract machine implementing e.

2

For space, it is not clear what abstract space would be, thus we have only ink space and
low-level space:

Ink space: the size of the largest λ-term among the ti.

Low-level space: the (max) space used by an abstract machine implementing e.

In this lecture we are mainly concerned with time. Ink time is locked with ink space
and easily shown to be reasonable. The problem with it is twofold. On the one hand, it
is a too generous notion, since the cost of functional programs is not usually estimated
in this way (in functional programming practice). On the other hand, it is difficult to
reason with such a notion, as it is not abstract enough, because different β-steps have
different costs.

Low-level time is a more realistic measure, it is locked with low-level space (if they refer
to the same implementation), and easily proved to be reasonable. The obvious drawback
is that it rather is a family of cost models, as the cost depends on the implementation.
Even when the evaluation strategy is fixed, there are many possible implementations,
which may have very different asymptotic costs. Additionally, it is a notion of cost
that depends very much on implementation details. It does not have the distance-from-
implementative-details that is distinctive of the λ-calculus.

Abstract time is the best notion, since it does not depend on an implementation and
it is close to the practice of cost estimates, which does count the number of function
calls, that, roughly, is the number of β-steps. The puzzling point is that it is not locked
with ink space, which seems the natural corresponding notion of space: ink space can
indeed be exponential in abstract time (independently of the strategy), a degeneracy
known as size explosion—we shall say that time and space are explosive. Size explosion
seem to suggest that abstract time is not reasonable. Roughly, β-steps do not seem
to be reasonable operations, as they are based on the complex operation of meta-level
substitution.

Is the λ-calculus reasonable? It certainly is, with respect to unsatisfying cost models
such as the ink or low-level ones. The interesting question rather is whether abstract
time is a reasonable cost model. This was unclear for a while, because of the intuition
that a reasonable time cost model has to be locked with its underlying notion of space,
as it is the case for TMs.

Key Points. There are a few points that have to be better understood, and that we
shall discuss in the following order (the following list provides sketched answers):

1. Strategy : which strategy should one consider as providing a notion of reasonable
time for the λ-calculus? Roughly, the main evaluation strategies (weak head, head,
leftmost, call-by-value, call-by-need) all do.

2. Reasonable steps: what is a reasonable computational step? Is β a resonable step?
This will lead us to isolate the sub-term property.

3. Size explosion: is size explosion inevitable? What is it due to? Size explosion is
inevitable in the λ-calculus, and connected to the sub-term property.

3

4. Abstract time: is abstract time reasonable? Yes, but one has to disentangle it from
ink space and reason up to sharing.

5. Abstracting low-level : is there a way of making low-level reasoning independent of
the choice of an implementation? Can low-level time be expressed in an abstract
way? Yes, it is possible, via a λ-calculus with sharing called linear substitution
calculus.

We shall discuss these key points in this lecture, which is organized along the two
natural halves of the study of cost models, namely finding:

1. A reasonable encoding of a reasonable theory (usually TMs) in the λ-calculus;

2. A reasonable encoding of the λ-calculus in a reasonable theory (usually RAMs).

Space. While space plays a key role in our understanding of the problem, we shall
rather focus on time in this course. Results about reasonable space are more recent and
more technical. They shall be discussed in another lecture.

2 From Turing Machines to the λ-Calculus

Most courses on the λ-calculus show how to represent partial recursive functions into
it—see for instance the classic books by Barendregt [Bar84] or Krivine [Kri93]. The
representation of TMs can be traced back to the appendix of Turing’s 1936 paper [Tur36].
In contemporary literature, however this representation is hard to find, but in itself it is
not difficult. It is also not hard to show that TMs can be reasonably simulated in the
λ-calculus, that is, within a polynomial overhead. The reason is quite simple: TMs are a
first-order system, while the λ-calculus is higher-order, so it is expected that higher-order
can simulate first-order reasonably.

At first sight, then, this direction seems not to be particularly exciting. Yet, here
it lies an interesting and counterintuitive aspect of the problem. Exactly because the
higher-order world is much larger than the first-order one, it is possible to encode TMs in
a very simple fragment of the λ-calculus, what we like to call the deterministic λ-calculus
Λdet. Let us introduce it.

The Deterministic λ-Calculus. The language of terms of Λdet is a strict subset of the
λ-calculus and is defined by:

Terms t, u, s, p ::= v | tv Values v, v′ ::= λx.t | x

Note that the right subterm of an application has to be a value, in contrast to what
happens in the ordinary λ-calculus. Evaluation in Λdet is also strictly less general than
in the ordinary λ-calculus, as evaluation contexts are weak, i.e. they do not enter inside
abstractions bodies:

Weak evaluation contexts Root rule Contextual closure
E ::= ⟨·⟩ | Ev (λx.t)u 7→β t{x�u} E⟨t⟩ →det E⟨u⟩ if t 7→β u

4

The deterministic λ-calculus is essentially the intersection of a continuation-passing style
(CPS) calculus, where arguments can only be values, and of a weak calculus. Being CPS,
call-by-name and call-by-value coincide, simply because all arguments are values. CPS
calculi however usually rely on strong evaluation, while here we adopt the weak one.

The combination of the CPS and weak restrictions provides the following determinism
property, that justifies the name of the calculus.

Lemma 2.1 (Determinism). Let t ∈ Λdet. If t →det u and t →det s then u = s.

Proof. By induction on t. If t is a variable or an abstraction then it cannot reduce. If
t = pv then there are two cases:

• p is an abstraction λx.q. Then t = (λx.q)v →det q{x�v} is the unique redex of t,
that is, u = s = q{x�v}.

• p is not an abstraction. Then the two steps from t come from two steps p →det u
′

and p →det s
′ with u = u′v and s = s′v, because ⟨·⟩v is the only possible evaluation

context. By i.h., u′ = s′, that is, u = s.

Encoding Turing Machines. In the note [DLA17] available on Accattoli’s webpage,
there is an encoding of TMs in Λdet, due to Dal Lago, within a linear overhead in time,
explained in all details. For this course, we only need the main result of that note, given
right next. The interested reader, however, is invited to have a look at the note.

Theorem 2.2 (Linear simulation, [DLA17]). Let Σ be an alphabet and f : Σ∗ → Σ∗

a function computed by a Turing machine M in time g. Then there is an encoding
· into Λdet of Σ, strings, and Turing machines over Σ such that for every s ∈ Σ∗,
Ms →n

det f(s) where n = Θ(g(|s|) + |s|).

Let’s now see the consequence of the existence of such an encoding.

Weak Strategies. Essentially, all the weak strategies of the λ-calculus collapse when
restricted to the deterministic λ-calculus: terms have at most one weak redex and so
all weak strategies coincide. Then all weak strategies provide a reasonable simulation of
TMs, and whenever a weak strategy (of the unrestricted λ-calculus) can be reasonably
simulated on a reasonable model then it is reasonable, independently of its efficiency.

Let us now go back to the half-determinism of the λ-calculus. The difference in
efficiency between strategies may be such that, on a given term, a strategy normalises
while another one diverges. Despite its desperate inefficiency, if a diverging strategy
can be implemented within a polynomial overhead then it is reasonable. And this is
indeed possible: weak call-by-value is a reasonable strategy and yet it can diverge when
weak call-by-name (aka weak head reduction) terminates. Typically, the following term
(λx.y)((λz.zz)(λz.zz)) normalises in one step in call-by-name but diverges in call-by-
value (note that it does not belong to Λdet). Therefore, reasonable weak strategies need
not being terminating, which is a quite counterintuitive fact. What they do need to
verify is that they allow to simulate TMs (according to the encoding of Theorem 2.2),

5

which is a weaker requirement. Namely, they only need to avoid stopping while there
still are weak redexes.

Strong Strategies and Perpetuality. For strong strategies the question is subtler. First
of all, let us be precise: we mean that one keeps the same encoding of Theorem 2.2,
the image of which is in Λdet, but then one liberalizes the deterministic λ-calculus
by adopting strong evaluation rather than the weak one. The change breaks the key
determinism of Λdet, and then the choice of the strategy matters.

The encoding of Theorem 2.2 still provides a linear simulation of TMs for strategies
such as strong call-by-name (aka leftmost reduction) and strong call-by-value. More
generally, for every strong strategy reducing weak redexes or weak head redexes before
any strong one.

For strong strategies, however, the behaviour with respect to termination is not ir-
relevant as in the weak case (because the relaxed Λdet is not deterministic). The point
is that the encoding relies on a fix-point operator. Fix-point operators always have,
among the various possible evaluations, some diverging strong evaluations. Therefore,
strong strategies selecting such diverging evaluations diverge on the encoding of every
TM, thus failing to simulate them. Therefore, their number of steps cannot provide
reasonable time cost models.

3 From λ-Calculus to Turing Machines

Encoding the λ-calculus into a reasonable theory is the difficult part of showing that
abstract time is reasonable for the λ-calculus. The target theory is usually RAMs, as
it is the theory usually used for studying the complexity of concrete algorithms. The
simulation is studied in detail but the actual encoding on RAMs is never spelled out.
It is considered enough to provide the complexity analysis of a semi-formal algorithm
implementing the λ-calculus.

Given an evaluation sequence t0 →n
str tn in the λ-calculus, one wants to simulate it

on RAMs in time polynomial in the following two key parameters:

1. Size of the input : the size |t0| of the initial term, that is, the number of constructors
in t0.

2. Abstract time: the number n of β-steps.

We shall go through three steps: discussing reasonable steps, analyzing size explosion,
and introducing sharing to circumvent it.

4 Reasonable Steps and the Sub-Term Property

On Turing machines, the time cost of a single transition is O(1): it is proportional to the
size of the alphabet used by the machine, which is fixed and therefore constant. Given

6

a computational theory T , its computational steps do not have to be constant-cost in
order to provide a reasonable time cost model, as we now discuss.

Let us abstract away from the λ-calculus and β-reduction for a moment, and rather
consider a generic deterministic rewriting system (S,→). For it to be reasonably simu-
lated by RAMs, we introduce a notion of reasonable step.

Definition 4.1 (Reasonable steps). A rewriting system (S,→) has reasonable steps if
there exists a polynomial p such that for all t0 ∈ S and for every evaluation sequence
t0 →n tn the cost of the i-th step ti−1 → ti in the sequence is bound by p(t0, i) when
implementing the sequence e on RAMs, that is, it is polynomial in the size of the initial
term and the number of preceding steps in the sequence.

As expected, reasonable steps guarantee that the rewriting system can be reasonably
simulated on RAMs.

Proposition 4.2. If a rewriting system (S,→) has reasonable steps then every sequence
t0 →n tn can be implemented on RAMs in time polynomial in n and |t0|.

Proof. The cost of the sequence is the sum of the costs of single steps, which by the
reasonable steps hypothesis is a sum of polynomials, which is a polynomial.

Usually, the reasonability of steps follows from the so-called sub-term property. The
property has two formulations, a structural and a quantitative one.

Definition 4.3 (Sub-term property). A rewriting system (S,→) has the sub-term prop-
erty if in every sequence t0 →n tn every step of the sequence either only involves a
constant number of constructors or it duplicates or erases a term:

• Structural sub-term property: which is a sub-term of t0 up to variables renaming;

• Quantitative sub-term property: of size bound by |t0|,

In the case of duplications, the number of copies is also bound by |t0| (for both notions).

The structural property provides the intuition and gives the name to the property. For
cost analyses, however, one only needs the quantitative version. The two formulations
are two sides of the same concept and most of the time we simply refer to the sub-term
property, without further specification.

The sub-term property usually immediately implies the linear cost of steps with respect
to |t0|—steps are then reasonable. A priori, it might be that, even when the property
holds and thus the size of duplicated terms is under control, searching for redexes might
be expensive. Technically speaking, then, the sub-term property does not directly imply
reasonability, even if in most cases it is usually the case. We shall discuss the search for
redexes in the next lecture.

7

λ-Calculus vs the Sub-Term Property. In the λ-calculus, no evaluation strategy has
the structural sub-term property, as we now show with an example. Let τt := λy.ytt
and I := λx.x. Then:

u := (λx.x(λz.τz)τx)I →β I(λz.τz)τI →β

(λz.τz)τI →β ττI = λy.yτIτI
(2)

Note that the sub-term τI duplicated by the third step is not a sub-term of u. Moreover,
u is closed and each term in the sequence as at most one β-redex, which is out of abstrac-
tions. Therefore, the example uses only weak evaluation and there are no alternative
evaluation sequences. The example even belongs to the deterministic λ-calculus Λdet.

Roughly, the reason why the sub-term property breaks is meta-level substitution,
which substitutes on all variable occurrences, thus affecting sub-terms that shall be
duplicated later on.

Linear Logic vs the Sub-Term Property. It is also easy to see that one of the main
evaluation strategies for proof nets does not have the sub-term property. Such a strategy
is cut elimination at level 0 (the level of a link is the number of ! boxes in which it is
contained), noted →0, which is, roughly, the analogous of head reduction for proof
nets2. The level 0 strategy does not compute cut-free proofs. As head reduction can
be iterated on arguments, obtaining leftmost reduction (which computes normal forms),
level 0 reduction can be iterated by levels, obtaining the least level strategy →ll that
first reduces all cuts at level 0, then those at level 1, and so on. Least level reduction
computes cut-free proofs.

We shall need only the following two reduction rules for proof nets:

Promotion / contraction Promotion / auxiliary port

c

?A⊥?A⊥

cut ?A⊥!A
!

?Bk?B1

. . . →c

?A⊥?A⊥!
. . .

cut

!
. . . !A!A

c

?B1

c

?Bk

. . .

cut
!

!A

P

?∆cut

!

?Γ

!B
→�

!

!A

P

?∆

cut

!

?Γ

!B

!

We shall use →c0 and →�0 for when these rules are applied to cuts at level 0.
Now, consider the following reduction sequence at level 0:

c

cut

!

1

cut

!

2 →�0
c

cut

!

1 !

2 →c0

!

1 !

2

!

1 !

2

The second step duplicates a !-box which is not a sub-term of the initial proof net,
breaking the sub-term property.

The example for linear logic is strictly weaker than for the λ-calculus, as it only shows
that one specific strategy (which is however the one of reference in the literature) does

2All head reduction redexes are redexes at level 0, when λ-terms are translated to proof nets.

8

not have the sub-term property. It is interesting, however, because proof nets do not
rely on meta-level substitution.

It is also instructive to see the diagram where one swaps the order of reduction of
redexes of the given example:

c

cut

!

1

cut

!

2 →�0
c

cut

!

1 !

2

99K

c0
↓c0

!

1

!

1

c

cut

!

2 99Kc0 !

1

!

1

cut cut

!

2

!

2 99K�0
!

1

!

1 !

2

!

2

cut

99K�0

!

1 !

2

!

1 !

2

The diagram can be closed by using only cut elimination at level 0—which is non-
deterministic—and the alternative path does not break the sub-term property. Note
however that the diagram is not diamond (in this respect, level 0 reduction is not as
head reduction). This is problematic, because it means that the number of steps of cut
elimination at level 0 is an ambiguous quantity, and then it cannot be used as a time
cost model. One would then argue that only the sub-term preserving paths of the level
0 strategy should be considered. This is a possible approach, but the definition of such
a sub-strategy is not evident, and it has never been studied.

5 Size Explosion

Here we show how the lack of the sub-term property leads to size explosion in the λ-
calculus and in linear logic, that is to a family of terms (or proof nets) the size of which
grows exponentially with the number of steps.

(Open) Size Explosion in the λ-Calculus. The simplest example of size explosion is
a variation over the famous looping λ-term Ω := (λx.xx)(λx.xx) →β Ω →β In Ω
there is an infinite sequence of duplications. In the first size-exploding family that we
see, there is a sequence of n nested duplications. We define both the family {tn}n∈N of
size-exploding terms and the family {un}n∈N of results of the evaluation

t0 := y u0 := y
tn+1 := δtn = (λx.xx)tn un+1 := unun

We use |t| for the size of a term, that is, its number of constructors, and say that a
term is neutral if it is normal and it is not an abstraction. Moreover, we note →rβ the
evaluation strategy that reduces the rightmost redex in a term, and use →n

rβ to denote

n steps of evaluation, with the convention that →0
rβ denotes the identity relation.

Proposition 5.1 (Open and Rightmost Size Explosion). Let n ∈ N. Then tn →n
rβ un

and the i-th step makes two copies of ui−1 (breaking the structural sub-term property
from the second step on), moreover |tn| = O(n), |un| = Ω(2n), and un is neutral.

9

Proof. By induction on n. The base case n = 0 holds, because t0 = y = u0 and →0
rβ is the

idenity. The inductive case: tn+1 = (λx.xx)tn →n
rβ (λx.xx)un →rβ unun = un+1, where

the first sequence is obtained by the i.h. and the last step is the rightmost one because
un is neutral. The bounds on the sizes are immediate. The fact that un+1 = unun is
normal/neutral follows by the fact that un is neutral.

The statement of Proposition 5.1 stresses that, from i ≥ 2, the i-th step of the sequence
from ti duplicates ui, which is not a sub-term of ti, thus breaking the sub-term property.

Let us clarify this important point. In the λ-calculus, a step t →β u can only duplicate
a sub-term of t, if it duplicates at all. Note that the sub-term property asks something
more, namely that also later steps duplicate a sub-term of the initial one. This further
requirement is not verified in the λ-calculus (as size explosion and counter-example (2)
show), because by chaining duplications of what was duplicated at the previous step,
one ends up duplicating terms of size exponential in the size of the initial term. Note
that size explosion shows that, with sufficient iterations, the breaking of the structural
sub-term property (duplicating a term that is not a sub-term of the initial term) leads
to the breaking of the quantitative sub-term property (duplicating a term that is bigger
than the initial term).

Size Explosion in Linear Logic. We are now going to show an example of size explosion
for cut-elimination at level 0 in proof nets. It is an interesting fact by itself, but it also
allows us to stress an important delicate point. Size explosion in the λ-calculus is partly
due to the fact that β-reduction is based on meta-level substitution. We shall later see
that decomposing β-reduction allows us to verify the sub-term property and avoid size
explosion. The linear logic case is interesting because it does decompose β-reduction
and yet still suffers of size explosion. Therefore, it proves that decomposing β is not
enough, one also needs to do it in the right way.

For the time being, let’s consider untyped proof nets. We define various families of
proof nets. The n-th net τn has the following shape:

τn

... {2n

!

And it is defined as follows:

τ1 :=
ax

ax

⊗dd

!

τn+1 :=

ax

ax

⊗dd

cut

τn

...

{2n

!

τn

...

{2n

!

cut

!

Then we define the family πn, which is obtained from τn by contracting all its 2n auxiliary
conclusions via a tree of contractions:

10

πn :=

τn

...

c

!

also noted
πn

!

For instance, π1 is the following net:

π1 =
τ1

!

c
=

ax

ax

⊗dd

c

!

Finally, define the following family of nets:

ρ1 := π1

ρn+1 :=
π1

!

ρn

!

cut

Lemma 5.2 (Size explosion). ρn →3(n−1)
0 πn and the 3i-th step makes two copies of

τi (thus breaking the sub-term property from the second step on), |ρn| = O(n), and
|πn| = Ω(2n).

Proof. By induction on n. The bounds on the sizes follow immediately from the defini-
tion and the i.h. For n = 1, we have ρ1 = π1, so the statement holds. For n+ 1, we have

that by i.h. ρn →3(n−1)
0 πn. Therefore, we obtain:

ρn+1 =
π1

!

ρn

!

cut

→3(n−1)
0

π1

!

πn

!

cut

=

ax

ax

⊗dd

c

!τn

...

c

!

cut

→c0

ax

ax

⊗dd

!

cut

τn

...
!

τn

...
!

cut

...

c c...

c

...

→�0→�0

ax

ax

⊗dd

cut

τn

...
!

τn

...
!

cut

!

c c...

c

...

=

τn+1

...

c

!

=
πn+1

!
.

11

5.1 Size Explosion is Everywhere

Here we dissect size explosion in the λ-calculus. The aim is proving that all strategies
suffer of size explosion.

Explosiveness is not Stable Under Substitutions. Let us starting by seeing what hap-
pens when the given open exploding family is closed by substituting the identity I := λz.z
on y. We consider a specific case, susbstituting I on t3 and evaluate—as before—in a
rightmost way:

t3{y�I} = δ(δ(δI))
→rβ δ(δ(II))
→rβ δ(δ(I))
→rβ δ(II)
→rβ δI
→rβ II →rβ I

Note that the normal form is just the identity, that is, the size of the last term does
not explode anymore (and the sub-term property is not broken). The reason is that
replacing y with the identity I turns applications of the form yy into new β-redexes,
which consume the size, removing the degeneracy. Of course, this fact holds for the
whole family.

Proposition 5.3. Let n ∈ N. Then tn{y�I} →2n
rβ I.

Proof. By induction on n. The base case is immediate as t0{y�I} = u0{y�I} =
y{y�I} = I. The inductive case: tn+1{y�I} = δtn{y�I} = δ(tn{y�I}) then by i.h.

tn{y�I} →2n
rβ I, so that δ(tn{y�I}) →2n

rβ δI →rβ II →rβ I, that is, tn+1{y�I} →2(n+1)
rβ

I.

Closed Size Explosion. The natural question then is: does size explosion depend on
the use of open terms? The answer is no. Of course, it is enough to put the open
family {tn}n∈N under the abstraction λy (that is considering the family {λy.tn}n∈N),
that closes it, to obtain a closed size exploding family. But such a modified example
explodes only under strong evaluation (that is, evaluation that goes under abstraction),
while under weak evaluation the terms are normal. Let us then refine the question into:
is there a family of closed terms that explodes under weak evaluation (using whatever
weak evaluation strategy)? The answer is yes. The simplest case is obtained by tweaking
the given open family, and still evaluate in a rightmost way.

Let π := λx.λy.yxx. Now, define:

p0 := I q0 := I

pn+1 := πpn qn+1 := λy.yqnqn

Proposition 5.4 (Closed and Rightmost Size Explosion). Let n ∈ N. Then pn →n
rβ qn,

moreover |pn| = O(n), |qn| = Ω(2n), and qn is normal.

12

Proof. By induction on n. The base case n = 0 holds, because p0 = I = q0 and →0
rβ is

the idenity. The inductive case: pn+1 = πpn →n
rβ πqn = (λx.λy.yxx)qn →rβ λy.yqnqn =

qn+1, where the first sequence is obtained by the i.h. and the last step is the rightmost
one because qn is normal by i.h. The bounds on the sizes are immediate.

Note that the family explodes with respect to rightmost weak evaluation also if one
defines π as λx.λy.xx. The difference is that this further family does no longer explode
under strong evaluation.

Strategy-Independent Size Explosion. It is natural to wonder whether a different
strategy would avoid size explosion. It is not difficult to see that if the open family
{tn}n∈N is evaluated in a leftmost way, rather than according to the rightmost strategy,
then evaluation takes an exponential number of steps. Let’s see an example. Again we
consider the term t3 of the open exploding family above, but now we evaluate it using
the leftmost strategy →lo. We obtain t3 →23−1

lo y2
3
:

t3 = δ(δ(δy)) →lo δ(δy)(δ(δy))
→lo δy(δy)(δ(δy)) →lo yy(δy)(δ(δy))
→lo yy(yy)(δ(δy)) →lo yy(yy)(δy(δy))
→lo yy(yy)(yy(δy)) →lo yy(yy)(yy(yy))

Note that size explosion disappeared, but for a different reason than when we substituted
the identity I on y above: now the result does have size exponential in n, but it is
obtained in a number of steps itself exponential in n, and so there is no exponential gap
between the number of β steps and the size of the normal form.

Of course, this fact holds for the whole family {tn}n∈N.

Proposition 5.5. Let n ∈ N. Then tn →2n−1
lo un.

Proof. By induction on n. The base case is immediate as t0 = u0 = y and 20−1 = 1−1 =
0. The inductive case: tn+1 = (λx.xx)tn →lo tntn →2n−1−1

lo untn →2n−1−1
lo unun = un+1,

where the two →2n−1−1
lo sequences are obtained by the i.h. The number of steps for tn

is then 2 · (2n−1 − 1) + 1 = 2n − 2 + 1 = 2n − 1, as required.

The new natural question is: is there a family that explodes with respect to leftmost
evaluation? Again, the answer is yes. This time the tweak of the open family is a bit
trickier, and the schema for defining the exploding family is slightly different. Define
the following pre-family :

s1 := δ = λx1.x1x1
sn+1 := λxn+1.sn(xn+1xn+1)

The leftmost exploding family is actually given by {sny}1≤n∈N , that is, it is obtained
by applying the term sn of the pre-family to the free variable y. The family of results is
still un, as defined before for open size explosion (and such that y = u0). The statement
we are going to prove is also slightly different. It is more generally about snum instead
of just sny, in order to obtain a simple inductive proof.

13

Proposition 5.6 (Open and Leftmost Size Explosion). Let n,m ∈ N and n > 0. Then
snum →n

lo un+m, moreover |sn| = O(n).

Proof. By induction on n. The base case n = 1 holds s1um = (λx1.x1x1)um →lo umum =
um+1. The inductive case: sn+1um = (λxn+1.sn(xn+1xn+1))um →lo sn(umum) =
snum+1 →n

lo un+m+1, where the last sub-sequence is obtained by the i.h., and the global
number of →lo steps is n + 1, as required. The bound on the size is immediate.

Note that the given family explodes also under strong evaluation that is not leftmost.
Indeed, all evaluations of the family—independently of the strategy—have the same
length, which is why we call it strategy-independent.

Closed and Strategy-Independent Size Explosion. The ideas for the closed family
and for the strategy-independent family can be combined, obtaining that size explosion
affects every strategy of the λ-calculus, in every setting.

Define the pre-family {tn}1≤n∈N and the family of results {s}n∈N as follows:

t1 := λx.λy.yxx tn+1 := λx.tn(λy.yxx) s0 := I sn+1 := λy.ysnsn

Proposition 5.7 (Closed and strategy-independent size explosion). Let n > 0. Then
tnI →n

β sn. Moreover, |tnI| = O(n), |sn| = Ω(2n), tnI is closed, and sn is normal.

It is also easily seen that this family is typable with simple types—do the exercise.
What can you say about the size of the type?

Number of Copies. Let us show a final observation about size explosion. Consider the
third element t3I of the last family, and let’s reduce it in a innermost way, exploiting
the annotation τt := λy.ytt, so that t1 = λx.τx and tn+1 = λx.tnτx:

t3I = (λx3.(λx2.(λx1.τx1)τx2)τx3)I
→β (λx3.(λx2.ττx2))τx3)I

→β (λx3.τττx3)I

→β τττI

(3)

Note that the first two steps duplicate a renaming of τx and that the last step duplicates
I: it looks like the structural sub-term property is not broken. Here it plays a role the
final clause in the definition of the property:

In the case of duplications, the number of copies is also bound by |t0|.

Indeed in (3) it is the number of copies of the duplicated sub-term that grows exponen-
tially (τττx3 has eight occurrences of x3), thus still breaking the sub-term property.

14

Summing Up. The last family we considered is such that:

• Closed : it is closed;

• Strategy independent : weak evaluation and all the possible strong evaluations of
the family have the same length, and they all lead to the explosion;

• Typable: it is even typable with simple types.

• Living in Λdet: it is a term of the restricted deterministic λ-calculus used to encode
TMs.

Therefore, every minimally expressive dialect of the λ-calculus suffers of size explosion.
As a slogan, size explosion is everywhere.

Let us point out that, while Λdet admits size explosion, the size of the terms of Λdet

encoding TMs never explode.

6 Circumventing Size Explosion Using Sharing

Hidden Assumption about Space. All dialects of λ-calculus suffer from size explosion.
And size explosion seems to imply that the number of β-steps cannot be a reasonable
time cost model: the number of steps does not even account for the time to write down
the result, which is exponentially bigger. While this is the natural way to read size
explosion, this is also somewhat the wrong conclusion. In fact, the number of β-steps is
a reasonable time cost model, which means that there is a hidden wrong hypothesis in
the natural reading. Let us focus on such a wrong hypothesis.

Essentially one is assuming that the underlying notion of space for the λ-calculus is
given by ink space, that is, the maximum size of terms during evaluation. Since one
is assuming that time and space are locked (that is, that you need time to use space),
the time cost of the size exploding family must be at least exponential. The somewhat
wrong hypothesis then is the adoption of ink space as the reference notion of space.

The number of β-steps of some strategies can be taken as a reasonable cost model
by switching to low-level space. The idea is to evaluate up to sharing, where sharing is
used to both retrieve the sub-term property, and thus have reasonable steps, and keep
the representation of λ-terms compact, avoiding size explosion. The idea is to simulate
small-step β-reduction in a refined system where β-reduction is decomposed in micro-
steps and simulated using some form of sharing of sub-terms. The micro-step formalism
can be a λ-calculus with explicit substitutions (as we shall do here), an abstract machine
(as we shall do in the next lecture), or some graph-rewriting mechanism (such as proof
nets). These approaches are all based on the following ideas:

1. Smaller terms: space is rather the maximum size of λ-terms with sharing during
micro-steps, shared evaluation.

2. Compact normal forms: evaluation in the micro-step formalism stops before reach-
ing the normal form, on a compact representation of it.

15

3. Reasonable steps: micro-step strategies can have the sub-term property, thus pro-
viding a notion of reasonable low-level cost model.

4. From low-level to abstract time: micro-step strategies simulate small-step strategies
within a polynomial overhead.

As we said, the details of the micro-step formalism do not matter, as the same recipe can
be adapted to explicit substitutions, abstract machine, and graph-based formalism. This
is however only partly true, because it is a quite delicate recipe, and not every choice of
micro-step formalism and micro-step strategy does work. For instance, we have shown
that if proof nets are the formalism of choice, then the level 0 or least level strategies
do not have the sub-term property, and thus cannot be used for the recipe. Therefore,
some other evaluation strategies for proof nets are needed. We shall not have the time
to discuss them, unfortunately.

Micro(-Step) Weak Head Reduction. To give substance to the discussion, we now give
an example of such recipe by defining a sharing-based, micro-step version of weak head
reduction. It is a strategy of the linear substitution calculus, a λ-calculus with explicit
substitution (shortened to ES) which, as a calculus, shall be properly introduced and
studied in a following lecture. For the moment, we only look at the strategy. We shall
also state some properties that are going to be proved in the next lectures.

The language of terms is simply the one of terms with ES.

Terms with sharing t, u, s, p ::= x | λx.t | tu | t[x�u]

Which can be related to λ-terms without ES via the notion of unfolding.

Unfolding

x

→

:= x (λx.t)

→

:= λx.t

→

(t u)

→

:= t

→

u

→

t[x�u]

→

:= t

→

{x�u

→

}

In order to define the strategy, we define two notions of contexts, weak head contexts
and substitution contexts. Moreover, we redefine general contexts in presence of ES.

General Contexts C ::= ⟨·⟩ | λx.C | Ct | tC | C[x�u] | t[x�C]
Substitution Contexts S ::= ⟨·⟩ | S[x�u]
Weak Head Contexts E ::= ⟨·⟩ | Et | E[x�u]

The rewriting rules use contexts to define both the root rules and their context closures.

Root rules
Micro(-step) β S⟨λx.t⟩u 7→mβ S⟨t[x�u]⟩

Micro(-step) substitution E⟨x⟩[x�u] 7→msub E⟨u⟩[x�u]

Contextual closure
E⟨t⟩ →mβ E⟨u⟩ if t 7→mβ u

E⟨t⟩ →msub E⟨u⟩ if t 7→msub u

Notation →mwh := →mβ ∪ →msub

16

The use of the substitution context S in the micro β rule is a compact notation for
steps such as the following one:

(λx.t)[x1�s1] . . . [xn�sn]u → t[x�u][x1�s1] . . . [xn�sn]

where the list of substitutions [x1�s1] . . . [xn�sn] is seen as a substitution context S =
⟨·⟩[x1�s1] . . . [xn�sn].

Similarly, the micro substitution rule replaces a variable occurrence which is possibly
far, in the term structure, from the acting ES. For instance:

(x(λy.yx))[z�t]u[x�s] →msub (s(λy.yx))[z�t]u[x�s]

Note also that it replaces only the weak head occurrence of x leaving the other potential
occurrences untouched.

There is no rule for erasing ESs. The linear substitution calculus has such a rule, but
here it is not needed—we shall see it in a following lecture.

Micro weak head reduction work modulo α-renaming, which is performed on-the-fly
in the →msub rule, to avoid capture. For instance.

(λx.yx)[y�xz] →msub (λw.xzw)[y�xz]

Proposition 6.1. Micro weak head reduction →mwh is deterministic.

Proof. Let t →mwh t1 and t →mwh t2. We prove t1 = t2 by induction on t. Cases of t:

• Variable or abstraction. Impossible, because then t cannot reduce.

• Application, that is, t = us. Sub-cases:

– u has shape S⟨λx.u′⟩. Then there is only one redex from t, namely t =
S⟨λx.u′⟩s →mβ S⟨u′[x�s]⟩.

– u ̸= S⟨λx.u′⟩. Then the two steps from t come from two steps u →mwh u1
and u →mwh u2 with t1 = u1s and t2 = u2s. By i.h., u1 = u2, and so t1 = t2.

• Substitution, that is, t = u[x�s]. Sub-cases:

– u has shape E⟨x⟩. Then there is only one redex from t, namely t = E⟨x⟩[x�s] →msub

E⟨s⟩[x�s], because t can be written as E⟨x⟩ in one way only.

– u ̸= E⟨x⟩. Then the steps from t come from two steps u →mwh u1 and
u →mwh u2 with t1 = u1[x�s] and t2 = u2[x�s]. By i.h., u1 = u2, and so
t1 = t2.

The next theorem says that micro weak head reduction implements weak head re-
duction up to unfolding, and that the number of →wh head steps (noted |e| for a →wh

evaluation sequence e) is exactly the number of →mβ steps (noted |e|mβ for a →mwh

evaluation sequence e). The proof is omitted. We shall see in the next lecture how to
prove the theorem.

Theorem 6.2 (Implementation). Let t be a λ-term without ES.

1. If e : t →∗
mwh u then e

→

: t

→

→∗
wh u

→

with |e|mβ = |e

→

|.

2. If e : t →∗
wh u then there exists e′ : t →∗

mwh s with s

→

= u and |e| = |e′|mβ.

17

Sub-Term Property. Weak head reduction does not have the sub-term property. The
main reason to study its micro-step refinement is that it has the sub-term property. It
can be proved via a simple invariant. We need a definition.

Definition 6.3 (Box sub-terms). Box contexts are given by the following grammar:

Box Contexts B ::= t⟨·⟩ | t[x�⟨·⟩] | C⟨B⟩

The box sub-terms of a term with ES t are the sub-terms u of t in a box contexts, that
is, such that t = B⟨u⟩ for a box context B.

Note that the box sub-terms of a term t are exactly those sub-terms that end up in
a !-box when t is translated to linear logic proof nets, and so are exactly the sub-terms
that can be duplicated.

Lemma 6.4 (Local sub-term invariant). Let t →mwh u. Then the box sub-terms of u
are box sub-terms of t up to α-renaming.

Proof. Cases of t →mwh u:

• Micro β, that is, t = E⟨S⟨λx.s⟩p⟩ →mβ E⟨S⟨s[x�p]⟩⟩ = u. Note that p is a box
sub-term of t. All others box sub-terms of u are in E, S, s or p, and thus are also
box sub-terms of t.

• Micro substitution, that is, t = E⟨F ⟨x⟩[x�s]⟩ 7→msub E⟨F ⟨s⟩[x�s]⟩ = u. The box
sub-terms inside the newly made copy of s are traced back to the corresponding
one in the ES copy of s which is also in u, and all the others box sub-terms are
evidently also box sub-terms in u. Here it is where some α-renaming might take
place in E.

Proposition 6.5 (Sub-term property). Let t →∗
mwh u.

1. Let s be a box sub-term of u. Then |s| ≤ |t|.

2. Micro weak head reduction has the sub-term property.

Proof.

1. By induction on the length n of the sequence t →∗
mwh u. If n = 0 then the

statement holds. If n > 0 then let p →mwh u be the last step of the sequence. By
the local sub-term invariant (Lemma 6.4), the size of every box sub-term s of u is
bound by the size of a box sub-term of p, which by i.h. satisfy the statement.

2. Only rule →msub duplicates, and it does duplicate only box sub-terms, making one
copy at a time.

It is interesting to see how the counter-example (2) (page 8) to the sub-term property
in the λ-calculus is evaluated with →mwh (we recall that τt := λy.ytt):

18

(λx.x(λz.τz)τx)I →mβ (x(λz.τz)τx)[x�I]
→msub (I(λz.τz)τx)[x�I]
→mβ (y[y�λz.τz]τx)[x�I]
→msub ((λz.τz)[y�λz.τz]τx)[x�I]
→mβ τz[z�τx][y�λz.τz][x�I]
= (λy.yzz)[z�τx][y�λz.τz][x�I]

The last term is →mwh normal and unfolds to the →wh result λy.yτIτI. Note that the
sub-term τI which breaks the sub-term property for →wh is never duplicated by →mwh.
The example also shows that →mwh reductions are longer than →wh reductions.

Proposition 6.6 (→mwh is reasonably implementable). Micro weak head reduction
→mwh has reasonable steps, and so it can be reasonably implemented on RAMs.

Proof. Because of the sub-term property of →mwh, we are left to show that, in a sequence
t0 →∗

mwh tn, searching for the →mwh redex in ti can be done in time polynomial in |t0|
and i. This is fairly obvious because of the next two observations:

• Searching for the →mwh redex in term ti can be done in time polynomial in |ti|:
it is enough to always go left on applications and ES until one finds a variable x
or an abstraction, and then go back up towards to root constructor to find the
argument or the ES on x, if any.

• The size of ti is polynomial in |t0| and i because of the sub-term property.

Back to Size Explosion. Let’s evaluate with micro weak head reduction →mwh the
term s3y of the left-to-right open size exploding family of Proposition 5.6.

s1 := δ = λx1.x1x1 sn+1 := λxn+1.sn(xn+1xn+1)

s3y = (λx3.s2(x3x3)) y
→mβ (s2(x3x3))[x3�y]
= ((λx2.s1(x2x2))(x3x3))[x3�y]
→mβ (s1(x2x2))[x2�x3x3][x3�y]
= (λx1.x1x1)(x2x2)[x2�x3x3][x3�y]
→mβ (x1x1)[x1�x2x2][x2�x3x3][x3�y]
→msub (x2x2x1)[x1�x2x2][x2�x3x3][x3�y]
→msub (x3x3x2x1)[x1�x2x2][x2�x3x3][x3�y]
→msub (yx3x2x1)[x1�x2x2][x2�x3x3][x3�y]

It is easily seen then that the shape of the result of executing sny with →mwh is:

yxn . . . x1[x1�x2x2] . . . [xn−1�xnxn][xn�y] (4)

Note that the size of this final term is linear in n, that is, the evaluation of sny does not
explode, as expected, thanks to the sub-term property. On the other hand, unfolding
the final term recursively duplicates all the xixi in the ESs, producing the final terms
un of size exponential in n of the size exploding family. Therefore, the terms in (4) are
compact representations of the terms un.

19

7 From Low-Level Time to Abstract Time.

Proposition 6.6 proves that the low-level time cost model given by micro weak head
reduction is simulated reasonably by RAMs, and it is an instance of how sharing allows
to circumvent size explosion. Therefore, until now we have developed the following
diagram (the RAM/TM arrow is a basic fact from the literature, and the TM/Λ arrow
is given by Theorem 2.2, Λ is the set of λ-terms without ES, and Λsh is the set of λ-terms
with ES):

(Λ,→wh) TM

(Λsh,→mwh) RAM

linear

?

polynomial

quadratic (5)

The implementation theorem (Theorem 6.2) tells us that →mwh implements →wh, but
it does not tell us the overhead. It does tell us, however, that the number of non-shared
step coincides with the number of →mβ steps. Therefore, →mwh reductions are always
at least as long as →wh reductions. How longer can they be? To close the diagram we
need to bound how many linear substitution steps there can be in simulating →wh with
→mwh. We shall see in the next lecture that the bound is quadratic. One then obtains
the following diagram.

(Λ,→wh) TM

(Λsh,→mwh) RAM

linear

quadratic

polynomial

quadratic (6)

Summing up, we provided a simple instance of how to prove that abstract time is reason-
able by means of a reasonable low-level time cost model. All instances in the literature
follow a similar schema. Given a strategy →str on λ-terms and its associated low-level
refinement →shX in a system with sharing S, the proof that →str provides a reasonable
notion of abstract time is obtained by studying the arrows with the question mark in
the following diagram, and proving that they are polynomial in the size of the initial
term t and of the number n of β-steps taken by →str.

(Λ,→str) TM

(S,→shX) RAM

linear

?

?

quadratic (7)

The polynomiality of the bottom arrow is usually obtained via the sub-term property of
→shX . For the left arrow, it is obtained via a detailed study of how →shX implements
→str. If both simulations have polynomial overhead, one says that →str is reasonably
implementable, despite it suffering from size explosion (every strategy of the λ-calculus
does suffer from it), as it is meant to be implemented via →shX , which circumvents size
explosion because of the sub-term property. The main consequence of such a schema is
that the number →str steps then becomes a reasonable complexity measure—essentially

20

the complexity class P defined via →str coincides with the one defined by RAM or Turing
machines.

Let us stress the subtle key point here: →str is taken as a specification framework, the
reasonable execution of which is actually done via →shX . The important aspect is that,
once it is proved that →str is reasonably implementable, which requires →shX , then one
can reason about time directly with →str, by just counting →str steps, and forgetting
about implementation details, which are encapsulated in →shX and needed only for the
proof of reasonability.

Reasonable Sharing. The key point underlying the diagram in (7), is the fact that
the potential exponential growth of terms is isolated in the process of unsharing—also
called sharing unfolding—of normal forms up to sharing. To be sure that one is not
just sweeping the problem under the carpet, the adopted notion of sharing has to be
reasonable. Typically, terms with sharing must be comparable for equality of their
unfolding—a problem called sharing equality—in reasonable (that is, polynomial) time,
without having to unfold the sharing (that would re-introduce an exponential blow-up).
This fact is independent of the strategy and it has to be proven only once (for sharing as
explicit substitutions or let expressions)—it has been done for the first time by Accattoli
and Dal Lago [ADL12], where sharing equality is shown to be testable in time quadratic
in the sizes of the terms with sharing. The test can actually be done in linear time, as
shown by Condoluci, Accattoli, and Sacerdoti Coen [CASC19].

Let us be very clear about this key point. If the unfolded normal form of a term
has to be printed then there is no way out: unfolding—and therefore printing—may
re-introduce an exponential cost, even if the evaluation process has been carefully done
with sharing as to implement it reasonably. Printing normal forms however is not how
most evaluations end. If a normal form is used at all, it is often in an equality test,
and the results about sharing equality show that it can be tested efficiently without
unfolding. Then, one can claim that size explosion has finally been tamed.

8 Complements

Sharing and Reasonable Strategies. The kind of sharing at work in diagram (7), and
therefore the definitions of →shX , depends very much on the strategy →str.

The first result for weak strategies is due to Blelloch and Greiner in 1995 [BG95]
and concerns weak call-by-value (shortened to CbV) evaluation. Similar results were
then proved for weak call-by-name (CbN)—which is just another name for weak head
reduction—and weak call-by-need (CbNeed). These results actually deal with weak
evaluation plus the restriction that terms are closed. We call such a setting the closed
λ-calculus. For the closed λ-calculus adopting sub-term sharing, as shown, and as it is
done is most abstract machines in the literature via environments, is enough to obtain
a reasonable implementation.

The strong variants of CbN (which is leftmost reduction), CbV, and CbNeed are also
reasonable strategies. The first result is due to Accattoli and Dal Lago [ADL14] (2014),

21

for strong CbN. They showed that the strong case is inherently harder than the weak
case, as a more sophisticated notion of sharing, deemed useful sharing, is required—it is
sketched in the next paragraph.

In the literature, there also is an example of an unreasonable strategy. Asperti and
Mairson in [AM98] (1998) proved that Lévy’s parallel optimal evaluation [Lév78] is
unreasonable.

Useful Sharing. Going beyond the closed λ-calculus, can be done in two increasingly
liberal ways: admitting open terms (open case) and evaluating under abstraction3

(strong case). In these more liberal cases, sub-term sharing is no longer enough, as
size explosion comes back with some more nasty tricks, typically disguised as length
explosion: even when the refinement →shX has reasonable steps, it may now happen
that the simulation of →str by →shX requires an exponential number of →shX steps,
reintroducing an exponential cost.

A close inspection of the phenomenon shows that this can be avoided by dividing
shared substitution steps in two categories, useful and useless ones, and retaining useful
steps while forbidding the useless ones.

The idea is to restrict to minimal unsharing work. We now sketch it using an intuitive
approach similar to micro weak head reduction. A micro substitution steps is useful if
it contributes somehow to the creation of β-redexes, as in the following case:

(xy)[x�I] → (Iy)[x�I]

The β-redex Iy has been created by the substitution of I, which is then useful. A micro
substitution step is instead useless if it only makes the term size grow, without creating
β-redexes, as in this case:

(xy)[y�I] → (xI)[x�I]

Useful sharing amounts to forbid such useless steps. While the idea is simple, its formal-
ization is not so simple. First of all, note that being useful or useless is not a property of
the ES, rather it is a property of single variable replacements. For instance, (xx)[x�I]
has both a useful and a useless micro step. Therefore, usefulness cannot be defined at
the level of the λ-calculus but only at the micro level of refinements with sharing.

Additionally, some micro substitution steps are useful only in a relative way. Consider
for instance the following micro step:

(xy)[x�z][z�I] → (zy)[x�z][z�I] (8)

Is it a useful step? One would say no, as it does not create a β-redex. It is a necessary
step, however, in order to perform the following step

(zy)[x�z][z�I] → (Iy)[x�z][z�I]

3Evaluating under abstraction subsumes the open case. Indeed, if λx.t is closed, evaluating strongly
means evaluating under λx, that is, evaluating t, which may be open.

22

That does create a β-redex. Therefore, one has to consider the step in (8) as useful,
even if the β-steps that it contributes to create is in fact created only later on.

These observations are meant to give a taste of why useful sharing is needed, of what
it is, and why it is involved. We are not going to see useful sharing in detail, however,
as it is too technical for the this short course.

Reasonable vs Efficient. Let us stress that reasonable does not mean efficient : CbN
and CbV are incomparable for efficiency, and CbNeed is more efficient than CbN, and
yet they are all reasonable. Reasonable and efficient are indeed unrelated properties of
strategies. Roughly, efficiency is a comparative property, it makes sense only if there are
many strategies and one aims at comparing them. Being reasonable instead is a property
of the strategy itself, independently of any other strategy, and it boils down to the fact
that the strategy can be implemented with a negligible overhead. Actually, if a strategy
is too smart, then it risks to be unreasonable. It is essentially what happens with Lévy’s
parallel optimal evaluation. It is unreasonable, because implementing optimal steps
requires an overhead which is more than polynomial—namely, a tower of exponentials
in the worst case. Be careful again: unreasonable does not mean inefficient (but it does
not mean efficient either).

Being Reasonable Helps with Efficiency. Despite the orthogonality of the properties
of being reasonable and being efficient, the study of reasonable cost models does help in
the study of efficiency. Given two strategies, if they are reasonable then it possible to
compare them for efficiency by simply comparing the number of steps that they take on
the same term. This is possible because, roughly, being reasonable means that one can
count 1 for each β-steps, since the overhead of implementing that β-step is negligible.
If one or both the given strategies are not reasonable, instead, there is no easy way
of comparing them for efficiency. In particular, comparing the number of steps can
be completely misleading: just think of Lévy’s optimal strategy, for which 1 step may
actually count as a tower of exponentials.

An Anecdote. To give an idea of the subtlety but also of how much these questions
are neglected by the community, let us report an anecdote. In 2011, we attended a talk
where the speaker started by motivating the study of strong evaluation as follows. There
exists a family {un}n∈N of terms such that un evaluates in Ω(2n) steps with any weak
strategy while it takes O(n) steps with a certain exotic strong strategy, namely rightmost-
innermost. Thus, the speaker concluded, strong evaluation can be more efficient than
weak evaluation, and it is worth studying it.

Such a reasoning is wrong (but the conclusion is correct, it is worth studying strong
evaluation!). It is based on the hidden assumption that it makes sense to count the
number of β-steps and compare strategies accordingly. As just explained, such an as-
sumption is valid only if the compared strategies are reasonable, that is, if it is proved
that their number of steps is a reasonable time measure. In the talk, the speaker was
comparing weak strategies, of which we have various reasonable examples, together with

23

a strong strategy that is not known to be reasonable. In particular, rightmost-innermost
evaluation is probably unreasonable, given that, even when decomposed with sharing, it
lacks the sub-term property, which is used in all proofs of reasonability in the literature.

That talk was given in front of an impressive audience, including many big names and
historical figures of the λ-calculus. And yet no one noticed that identifying the number
of β steps with the actual cost was näıve and improper.

References

[ADL12] Beniamino Accattoli and Ugo Dal Lago. On the invariance of the unitary
cost model for head reduction. In Ashish Tiwari, editor, 23rd International
Conference on Rewriting Techniques and Applications (RTA’12) , RTA 2012,
May 28 - June 2, 2012, Nagoya, Japan, volume 15 of LIPIcs, pages 22–37.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.

[ADL14] Beniamino Accattoli and Ugo Dal Lago. Beta Reduction is Invariant, Indeed.
In Joint Meeting of the 23rd EACSL Annual Conference on Computer Science
Logic and the 29th Annual ACM/IEEE Symposium on Logic in Computer
Science (CSL-LICS ’14), pages 8:1–8:10, 2014.

[AM98] Andrea Asperti and Harry G. Mairson. Parallel beta reduction is not ele-
mentary recursive. In David B. MacQueen and Luca Cardelli, editors, POPL
’98, Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, San Diego, CA, USA, January 19-21, 1998,
pages 303–315. ACM, 1998.

[Bar84] Hendrik Pieter Barendregt. The Lambda Calculus – Its Syntax and Semantics,
volume 103 of Studies in logic and the foundations of mathematics. North-
Holland, 1984.

[BG95] Guy E. Blelloch and John Greiner. Parallelism in sequential functional lan-
guages. In John Williams, editor, Proceedings of the seventh international
conference on Functional programming languages and computer architecture,
FPCA 1995, La Jolla, California, USA, June 25-28, 1995, pages 226–237.
ACM, 1995.

[CASC19] Andrea Condoluci, Beniamino Accattoli, and Claudio Sacerdoti Coen. Shar-
ing equality is linear. In Proceedings of the 21st International Symposium
on Principles and Practice of Declarative Programming (PPDP 2019), pages
9:1–9:14, 2019.

[DLA17] Ugo Dal Lago and Beniamino Accattoli. Encoding Turing Machines into the
Deterministic Lambda-Calculus. CoRR, abs/1711.10078, 2017.

[Kri93] Jean-Louis Krivine. Lambda-calculus, types and models. Ellis Horwood series
in computers and their applications. Masson, 1993.

24

[Lév78] Jean-Jacques Lévy. Réductions correctes et optimales dans le lambda-calcul.
Thése d’Etat, Univ. Paris VII, France, 1978.

[SvEB84] Cees F. Slot and Peter van Emde Boas. On tape versus core; an application of
space efficient perfect hash functions to the invariance of space. In Richard A.
DeMillo, editor, Proceedings of the 16th Annual ACM Symposium on Theory
of Computing, April 30 - May 2, 1984, Washington, DC, USA, pages 391–
400. ACM, 1984.

[Tur36] Alan M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
2(42):230–265, 1936.

25

	Introducing Reasonable Cost Models
	From Turing Machines to the Lambda-Calculus
	From Lambda-Calculus to Turing Machines
	Reasonable Steps and the Sub-Term Property
	Size Explosion
	Size Explosion is Everywhere

	Circumventing Size Explosion Using Sharing
	From Low-Level Time to Abstract Time.
	Complements

