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Solvability

A A-term M is solvable if its closure AX.M admits an applicative
context [|P; - - - P, that “send it” to the identity:

(AX.M)Py---Pp =51
Otherwise, we say that M is unsolvable.

Examples
> K = Axy.x is solvable: KIl —g (Ay.I)l =3 I.
> M = Ax.xIQ is solvable: MK — 35 KIQ —35 (Ay.1)Q —5 |.

» Q is unsolvable, since it does not interact with any context [|P

QP—)ﬁQP—)gQP/—)g~“
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L Solvability

Solvability, equivalently

A A\-term M is solvable iff there are Py,

., Pn € A such that
(AX.M)Py--- P, =g H
for some hnf H.

Proof. (=) Trivial, since | is an hnf.
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Solvability, equivalently
A A\-term M is solvable iff there are Py,..., P, € A such that
(ARM)Py - Py =g H
for some hnf H.

Proof. (=) Trivial, since | is an hnf.

(<) Assume (AX.M)P =g H, for some P € A and H in hnf. Then
H has shape (for some k >0and 1 < <n>0)

H=Ay1...yn.yjMy - My
Define UX = A\xq - - - x| and apply it n times:

(ARM)P UK =5 HUK =5 UKM] - - M =5 |
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Solvability and head normalization

> A solvable M is capable of interacting with the context
(AX.[])P and eventually one the P;'s goes in head position.

» An unsolvable M leaves its arguments alone, because it always
have its own head redex to reduce.

Theorem (Wadsworth'76)
M is solvable if and only if it is head normalizable.
[ C.P. Wadsworth. The relation between computational and

denotational properties for Scott’'s D, models of the
A-calculus. SIAM J. Comput. 5,3 (1976).
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Classification Behaviour Result
normalizable P — P; — Py — Pgg — 42

completely defined

. >' >. ---------- y >‘—> 42
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:
Classification Behaviour Result
normalizable P — P; — Py — Pgg — 42 completely defined
unsolvable P — P' — P =199 P — undefined

Y

P P/

R~

WWW = (Ax.xWW)W

Take W = (Axy.xyy), then
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Classification Behaviour Result

normalizable P — P; — Py — Pgg — 42 completely defined

unsolvable P — P — P =190 P' — --- undefined
solvable P — 01P1 — 01(02P2) stable parts
— 01(02(O3P3)) — e
o0 01(02(- -0 ) ) (infinitary)
P > Py > Ps > P3 e
3, 1 4 15926535 - - -

By collecting all stable parts one constructs a possibly infinite tree.
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Playing with fixed point combinators

Let
Y = M. AfA¢,

with Ar = Ax.f(xx).

» Y is head-normalizing, but we can keep reducing it:
Y =5 MA(ArAf) —p MA(F(ArAf)) =5 MAN(AAf) —5 - -

The portion A\f.f(f(---)) is a stable part of the output.
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Playing with fixed point combinators

Let
Y = M. AfA¢,

with Ar = Ax.f(xx).
» Y is head-normalizing, but we can keep reducing it:

Y =55 MLF(ApDg) 5 AF(F(AFA)) 5 A (DfAg) 5 - -

The portion A\f.f(f(---)) is a stable part of the output.
> YK is not head-normalizing:

YK B K(AKAK) B )\Xl.AKAK B )\Xl .. .Xn.AKAK B

The portion Axy ...xp. is a stable part of the output, but it
does not contribute to the production of a hnf. YK unsolvable.
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The interest of semantics

Semanticist
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The interest of semantics
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The Bohm Tree Semantics
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Syntactic Models

< Modds >

description

Tree-like
structures

The (possibly infinitary) behaviour of a A-term
is modelled as a (possibly infinite) tree

[§ The type free lambda calculus. (1977).
H. Barendregt. Handbook of Mathematical Logic, volume 90
of Studies in Logic and the Foundations of Mathematics.
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The Bohm Tree Semantics (Barendregt '77)

Given a program M, its Bohm tree BT(M) is defined by: Example

BT(Y)

I

» If M is unsolvable, then BT(M) = L, Af.f
where L is a constant representing the undefined. 1'(
» Otherwise M —g Axi ... x,.y My --- M) and |
BT(M) = Xx1...x5.y flr
f
|

BT(Mi) - BT(My)

This induces an equivalence on A-terms:

M =g N <= BT(M) = BT(N)
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Bohm trees - Examples
BT(P,) BT(YI) BT(X)
1 I I

AX1 ... Xpy.y 1 )\/xx\

N N

y )\z.z\
z A

where

w.w
/
> Pp = AX1...XpY.YX1 " Xn

w 9.9
> X = Y(Ayx.xxy)

DAC14/47
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The Bohm tree semantics is “infinitary”

There are A-terms M, N with the same Bohm tree, that
cannot be equated by any “finite” reduction.

1. Take a A-term M satisfying (Its definition? Exercise!):
M — 3 Azx.x(Mz)

2. Take a variable y. Then, BT(My) = Ax.x = Ax.x

BT(My)  Ax.x
3. For y # z, we have My #3 Mz |
but BT(My) = BT(Mz). :
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Digression — Bohm Trees as Coinductive Data-Types

Bohm-like trees are coinductively defined by:
T i =co-ind 1 | )\Xl .. .x,,.yTl tee Tk

Intuition
> Start from the set of all possibly infinite labelles trees.
» Throw away all trees that do not satisfy the above rules.

» E.g., L1, infinitely branching trees, Ax1.Ax2.Ax3.Ax4. ...

Inductive grammar = least fixed point

~

Co-inductive grammar =2 greatest fixed point

Question: do you see a non \-definable Bohm-like tree?
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Digression — Bohm Trees as normal forms
The A\*-calculus:
(A>) M,N ::=coind L | x | Ax.M | MN

with S-reduction and L-reductions: 1M — | 1 and Ax.L —, L.

Reduction sequences may now have transfinite length o (ordinal)

Mo =1 My =g -+ My —g1 Myi1 —p1 - =1 M,

Theorem (Kennaway et Al.)

1. The A\*-calculus is confluent.
2. The X*°-calculus enjoys strong normalization.
3. For all finite M € A, M —»5, BT(M).
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Digression — Bohm Trees as normal forms

The \°°-calculus:

(A) M, N ::=coind L | x | Ax.M | MN

with S-reduction and L-reductions: 1M — | 1 and Ax.L —, L.

Reduction sequences may now have transfinite length « (ordinal)

Mo —pg1 My —pg1 -+ My —pg1 Myt1 —pL -+ =g My

@ R. Kennaway, J.W. Klop, M. R. Sleep, F.-J. de Vries: Infinitary
Lambda Calculus. Theor. Comput. Sci. 175(1): 93-125 (1997)

[ tukasz Czajka: A new coinductive confluence proof for
infinitary A-calculus. Log. Methods Comput. Sci. 16(1) (2020)
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That was scary. ..can we go back to induction?

» Finite trees are pieces of “output” that can be obtained in a
finite amount of time.

> Bohm trees are naturally ordered, as follows:

L E Xof E AMf L XMSf E A

L

f
|
1

F—

u]
)]
I
"
i
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Lambda terms approximations

» The set A| of A\L-terms is defined as follows:
P,Q == L|x]|PQ|Ax.P

» Intuively, the constant L represents an unsolvable (2).

» — 5 extends in the obvious way:
(Ax.P)Q =5 Plx = Q]
» The L-reduction is generated by:

J_M—M_J_, )\X.J_—>J_J_
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Ordering A_L-terms

The ordering C on Al-terms is generated by:

PCP QCQ PCF
1LEP PQRLC P'Q Ax.P T Ax.P’

The corresponding “sup” P U @ is inductively given by:

luP = PuUul=FP
(PQ)U(P/Q/) = (PUP/)(QUQ/)
()\X.P)U()\X.Pl) = )\X-(PUP')

(It is well-defined on “compatible” elements only.)
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Finite Approximants

The set A of finite approximants is defined as follows:
(.A) A, A,' ..

= L | )\Xl...Xn.yA]_---Ak
Characterization. For P € A}, the following are equivalent
1. Pe A

2. Pisnormal w.rt. —g.




Denotational Models
LThe Béhm Tree Semantics
L Bohm Approximants

Direct approximation

The direct approximant w(M) € A of M € A is inductively defined:

WAXL .. XpyMy - - M) = Axp .o xpyw(My) - - - w(My),
WAt .. . xn.(Ay.P)QMy - - - M) = L

Lemma. M —3 N implies w(M) C w(N).
Proof. By structural induction on M. There are two cases:
1. M has a head redex. Trivial since w(M) = L.
2. M= A;yM1M2 My, N = )\)_('yMiMz -+« My, with
My —5 Mj. From the induction hypothesis w(M;) C w(Myj),
thus the conclusion follows. g
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Finite approximants of a \-term

The set of finite approximants of a A-term M is defined by

—
—

A(M )(1) {w(N) | N =g M}, conivalently
(AcA|INEN.M
¢ o

(N) | M =5 N}

,;NandAEN}

* Some work is needed to prove the equivalence (1) <= (2)
If M =5 N then A(

M) = A(N).

Trivial with (1), non-trivial with (2). [Hint: use confluence!]

U

DAC23/47
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Finite approximants of a A-term

The set of finite approximants of a A-term M is defined by:
A(M) e {w(N) | N =5 M}, equivalently*,

@ {AcA|INEA.M 5 Nand AT N}

7 {w(N) [ M —p5 N}

* Some work is needed to prove the equivalence (1) <= (2).

Lemma. If M =g N then A(M) = A(N).

Trivial with (1), non-trivial with (2). [Hint: use confluence!]

O
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Lemma. The set A(M) is an ideal w.r.t. C:
1. L e AM);

2. if A1, Ax € A(M) then A; U Ay € A(M);
3. downward closed: A; C A, € A(M)

= A E.A(

M).

Proof. With Definition 2, (1) and (3) become trivial.
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Lemma. The set A(M) is an ideal w.r.t. C:
1. L e AM);
2. if A1, Ax € A(M) then A; U Ay € A(M);
3. downward closed: A C Ay € A(M) = A € AM).

Proof. With Definition 2, (1) and (3) become trivial.
2) If A1, Az € A(M) then Ay = w(Ny) and Ay = w(Ny) for some

Ny =8 M =8 N>
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Lemma. The set A(M) is an ideal w.r.t. C:
1. L e AM);
2. if A1, Ax € A(M) then A; U Ay € A(M);
3. downward closed: A C Ay € A(M) = A € AM).

Proof. With Definition 2, (1) and (3) become trivial.
2) If A1, Az € A(M) then Ay = w(Ny) and Ay = w(Ny) for some

Ny =8 M =8 N>
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Lemma. The set A(M) is an ideal w.r.t. C:
1. L e AM);
2. if A1, Ax € A(M) then A; U Ay € A(M);
3. downward closed: A C Ay € A(M) = A € AM).

Proof. With Definition 2, (1) and (3) become trivial.
2) If A1, Ay € A(M) then A; = w(Ny) and Ay = w(N>) for some

\/\/
\/

Conclude since direct approximants increase along reduction. [
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The Syntactic Approximation Theorem

For all M € A,

BT(M) = | |A(M)

A(Q) = {L}, for Q = (Ax.xx)(Ax.xx),
AY)= { 1,
ML,
MLF(FL),
MLF(F(FL)), ...,
ML), ...}

BT

=

>

—h— K — K — "
(N

DAC25/47
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The Syntactic Approximation Theorem

For all M € A, Example
BT(Y)
BT(M) = | |A(M) I
1
Examples:
> A(Q) = {L}, for Q = (Ax.xx)(Ax.xx),
> AY)= { L1,
AL,
ALF(FL),
MLF(F(FL)), ...,
AFFP(L), ...}

u]

)]
I
"

i
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LBéhm Approximants

The Syntactic Approximation Theorem

For all M € A, Example
BT(Y)
BT(M) = | |A(M) L
M.
Examples: |
1

> A(Q) = {L}, for Q = (Ax.xx)(Ax.xx),
> AY)= { L1,
MFL,
AFF(FL),
MLF(F(FL)), ...
ML), ..}

u]

)]
I
"

i
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The Syntactic Approximation Theorem

For all M € A, Example
BT(Y)
BT(M) =| |AM l
(M) = L] AM) AF.f
Examples: |
> A(Q) = {L}, for Q = (Mxxx)(Axxx), 'lc
> AY)= { L1, 1
NFL,
AFF(FL),
NF(F(FL)), ...,
AFLEA(L), ...}

u]
)]
I
"
i
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The Syntactic Approximation Theorem

For all M € A,
BT(M) = | |A(M)

Examples:
> A(Q) = {L}, for @ = (Ax.xx)(Ax.xx),
> AY) = { 1,
M FL,
(L),
MLF(F(FL)), . ..,
ML), .}

Example
BT(Y)
I
AL
|

f
I
f’
I

1

D AC25/47
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The Syntactic Approximation Theorem

For all M € A, Example
BT(Y)
BT(M) =| |AM l
(M) = L] AM) AF.f
Examples: |
> A(Q) = {L}, for Q = (Mxxx)(Axxx), 'lc
> AY)= { 1, f
ML, |
AFF(FL), f
M .F(F(FL)),..., !
AFF(L), o) L

u]
)]
I
"
i

DAC25/47
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The Syntactic Approximation Theorem

For all M € A, Example
BT(Y)
BT(M) =| |AM l
(M) = L] AM) AF.f
Examples: |
> A(Q) = {L}, for Q = (Mxxx)(Axxx), 'lc
> AY)= { 1, f
NFL, |
AFF(FL), f
M .F(F(FL)),..., !
AFFA(L), ...}

DAC25/47
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Denotational Models

description
Sets of types

The meaning of a A-term
is given by the set of its types

Tree-like
structures

[@ A filter A-model and the completeness of type assignment.
H. Barendregt, M. Coppo, M. Dezani-Ciancaglini.
J. Symb. Log. 48(4): 931-940 (1983)
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BCD Types:
A, w,a,B,... countable set of atoms
Th: o,Ti=wl|a|oc—7|oAT intersection types

Derivation Rules:

X101,y Xn:0pba X0 (ax) Frea M:w (V)
Fr-axM:7—0 TEAN:T Mx:obFAM:T
A MN:o (=€) FTEAXMXM:0—71 (=)
FrEAaM:oc THAM:T FrEAaM:o o<r7
<
P M onr V) P ()
Subtyping:
o <o (refl) o AT <o (incly) o AT <7 (inclg) o < w (top)
(c=1T)N(c—=>7)<o—=(rAT) (—=4) w< o —w (arry)
o<~y y<r7T o<t o<7 o' <o T<7
ooy () o 6 T ()
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Filters of types
We study the collection
F ={F CTx| F is a filter of types }

> A subset F C Ty is a filter of types if:
1. weF,

2. 0,7 € Fimplieso AT € F,
3.0 Fand o <7 imply T € F.

» The principal filter generated by o € T, is given by:

ot ={r€Tr|o<T}EF
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Interpretation in the filter model BCD

Given M € A and a valuation p : A — F, define the interpretation
of M w.r.t. p by induction:

[xI; = p(x)

M) = {o—7|T€ [M]ZE[X::UT]}T

|[MN]]§: {r| 3o € [[N]]f.a—)TE |[M]]f}
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Interpretation in the filter model BCD

Given M € A and a valuation p : A — F, define the interpretation
of M w.r.t. p by induction:

[xI; = p(x)
M) = {o—7|T€ HM]ZE[X::UT]}T
[[MN]]ff = {r]3Jo € [[N]]Z:.a - T |[M]]Z:}

Characterization. For M € A, we have
[MI7 ={c € TA|Tr M: 0o}

where p(x) =71, forall x : 7 € T.
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Interpretation - examples

Remark. If M is closed, then Vp, p". [M], = [M], (forget the p!).

Exemples:
> [Q ={0]|0c~w} (since A Q1 w)
> [ ={c—0c|oceTr}t
> [MAQ] ={(w—0)—>0]|ceTrtt
> [Mxxx] ={(cA(c—7T))—=7]|0o,T€TrA}T
> [Kl={c—=7—0]0,7€Tr}?T
>

Spoiler alert. For all U unsolvable, we have (Vp):

U], ={0c|o~w}
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The theory induced by the model

Every model induces a notion of equality between A-terms:

F = M = N if and only if Vp.[M], = [N],

DAC32/47
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The theory induced by the model

Every model induces a notion of equality between A-terms:
F = M = N if and only if Vp.[M], = [N],
Main properties

Soundness:
M=N = FEM=N

(By the characterization + SR + SE)
Contextuality:

FEM=M = FEMM=&M
FEM=MadFEN=N = FlkMN=MN
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Lambda terms sharing the same interpretation

Examples:
> FEKIQ=I as KIQ =g |.
» F = Q =YI, as they are both unsolvable. Thus:
> F = Ax.xQ = Ax.x(Yl), by contextuality.
» For all fpc's Z, we have F =27 =Y.
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Interpreting A\ L-terms

We can extend the type system BCD to A by adding this rule:
MNA Lw ()
And therefore the interpretation of AL-terms:

[L1, = {0 | o ~w})

Everything works fine because | and 2 have the same properties.
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Typing the direct approximant
Lemma. Forall M e A:

NrNcFwM):0 = THFM:o

Proof. By induction on a derivation of I' - w(M) : o.
Case w(M) = 1. Then 0 ~ w, whence ' Fx M : w.
Case w(M) = yw(My) - - - w(My), since M = yM; - - - M.
By Inversion Lemma Il, applied k times, we get:

FTEAy: mm— - —=Tk—0
[ A W(Ml):Tl (I W(Mk):’rk.

By IH, we get [ = M; : 7;, from which T o yMy--- My : o
follows.
To be continued. . .
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Typing the direct approximant
Lemma. Forall M e A:

rN-wM):c = TTHFM:0o

Proof. Case w(M) = Ax.w(M’), with M = Ax.M’. By Inversion
Lemma |, there are 71,..., 7k, 71, .., 7k € T such that

(m—=m)A A=) <o
Vie{l,...,k}.T,x:7ibpn w(M):~;.

By IH, we get ', x : 7 o M’ : v;. We conclude:

FTEA MM cmp =y oo TEAMM 7 — i
CEa A M2 Ai(Ti = i) Ni(ti = i) <o
FEA AxM: o
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Semantic Approximation Theorem

Semantic Approximation Theorem. For M € A.

M1, = AL, | A € A(M)}

This is what we are going to prove.

Corollary. If BT(M) = BT(N) then F = M = N.

DAC37/47
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Semantic Approximation Theorem

Semantic Approximation Theorem. For M € A.

M1, = AL, | A € A(M)}

This is what we are going to prove.

Corollary. If BT(M) = BT(N) then F |= M = N.
Proof. Assume BT(M) = BT(N). Then also A(M) = A(N).

M1, = UacamlAl,, by Approximation Theorem,
UacamlAl, = [N, O
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Logical Approximation Theorem

Theorem
[FAaM:o < 3Pc AM).TH\P:0o

Proof. (<) Assume I' =5 P : o, for some P € A(M).
» By Definition 1, there exists N =3 M such that P = w(N).
» We have seen that [, w(N) : o implies T F5 N : 0.
» By SR+SE+confluence, typing is invariant under =g.
» Conclude =\ M : 0.

(=) Mmm... it does not seem so easy. |deas?
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Of course!

The property that we want for the A-terms of type o in I':
Pr(c)={MeN|FAc AM).THA, A 0}
Define the interpretation of o € T, in I as follows:

la|r = Pr(a), for a € A,
’U — T’r = {M ’ VF’,VN S ‘O’|r/ .MN € ’T‘r/\rl}

loATle = lolrOrlr
Remark. Recall that L € A(M) and ' =5 M : w, for every M. So
o ~ w implies |o|r = A

In particular |0 A w|r = |o|r, which is consistent with 0 Aw ~ 0.
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Of course!

The property that we want for the A-terms of type o in I':
Pr(c)={MeN|FAc AM).THA, A 0}

Define the interpretation of o € T, in I as follows:

lalr = Pr(a), for a € A,
lo—=7lr = Np (|a]r/ = ]T\r/\r/)
loATlr = lolrN|7Ir

Remark. Recall that L € A(M) and ' =5 M : w, for every M. So
o ~ w implies |o|r = A

In particular |0 A w|r = |o|r, which is consistent with 0 Aw ~ 0.
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Two steps

We need to prove that all typable terms are approximable:
Fr=AM:o

= Me Pr(O')
The proof is split into 2 steps. Step 1:

Fr'EaM:oc = Melolr
Step 2:
M€|U|r

= MGPr(O’)
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Auxiliary lemmas
Lemma (AUX0). M € |o|r and M =g N implies N € |o]r.
Proof sketch. By induction on o.
Lemma (AUX1). For M € A and z ¢ FV(M), we have:
Mz € Pr ,.(c) = MePr(r— o)

Proof sketch. Let P € A(Mz) such that [,z : 7+, P : 0. By cases
on P and M, show that 3P’ € A(M) such that T FA P : 7 — 0.

Lemma (AUX2). o < 7 implies |o|r C |7]r.

Proof sketch. By induction on a derivation of o < 7.
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Step 2 comes first
Main Lemma.
1. xM;---M, € Pr(o‘) implies xMy---M, € |O’|r.
2. |olr € Pr(o).
Proof. By simultaneous induction (IH1, IH2 = ind. hyp.)
1. Case 0 ~ w. Trivial since |w|r = A.

Case 0 = 11 A 1. Easy. B
Case 0 =711 = 7 (2 w). Let xM € Pr(o). Then

P € A(xMy---M,).THA P:7p =7
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JAni1 € A(N) such that T Fp Apyq 71
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Step 2 comes first
Main Lemma.
1. xMy---M, € Pr(o‘) implies xMy---M, € |O’|r.
2. |olr € Pr(o).
Proof. By simultaneous induction (IH1, IH2 = ind. hyp.)
1. Case 0 ~ w. Trivial since |w|r = A.

Case 0 = 11 A 1. Easy. B
Case 0 =711 = 7 (2 w). Let xM € Pr(o). Then

AP A(xMy - M) . TAT' FAP=xA1---A,: 71— T

with A; € .A(M,) By IH2, VN € |T1|r/ = Ne€ 'Prl(O’), i.e.
JAns1 € A(N) such that T AT Fp Appr : 71
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Step 2 comes first
Main Lemma.
1. xMy--- M, € Pr(c) implies xMy --- M, € |o]r.
2. |olr € Pr(o).
Proof. By simultaneous induction (IH1, IH2 = ind. hyp.)
1. Case 0 ~ w. Trivial since |w|r = A.

Case 0 = 11 A 1». Easy. ~
Case 0 =711 = 7 (2 w). Let xM € Pr(o). Then

EIPGA(xI\/Il---I\/ln).r/\rll—/\ P=xAi---A,:11 =D

with A; € .A(M,) By IH2, VN € ‘T1||-/ = N¢ Pr/(O’), i.e.
JAni1 € A(N) such that T AT Fp Appr : 1. By (—g),

FAT FpxAL---Apy1 i1 =T XMN € |m|rar (conclude)
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Step 2 comes first

Main Lemma.
1. xMy --- M, € Pr(o) implies xMy - -- M, € |o|r.
2. |o|r € Pr(o).
Proof. 2. Case o ~ w. Trivial since Pr(w) = A.
Case 0 = 71 A 2. By rule (Ay) and IH2.
Case 0 =11 — 1. Take M € |11 — 72|r and z a fresh variable.
Since z € |71|z:7,, by IHL, we have

M < ‘7-1 — 7'2||- and z € ’7_1|z:7'1 = Mze |T2|r,z:72
(by IH2> = Mze Pr,z:n (TZ)
(AUX1) = MePr(n—mn)
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Step 1 comes later

Main Theorem. Let M € A, with FV(M) C {xy,...,xa}.
LetN=x3:71,...,x,: 7 and Iy, ..., [, be type environments.
For all Ny € |11lr,, ..., No € |Talr,, we have

FTEAM:o = Mxi:=Ni,..., x5 := Np] € |O|rariaear,

Proof. By induction on the derivation of T =\ M : 0.
Ny:obaM:1
We only see this interesting case: [ A Ay.M 10 — 7

By IH, for all N; € |7i|r,, X € |o]r

(=1)

n+1

M[<:= N,y = X] € [Tleapriry
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Step 1 comes later

Main Theorem. Let M € A, with FV(M) C {xy,...,xa}.

LetN=x3:71,...,x,: 7 and Iy, ..., [, be type environments.
For all Ny € |11lr,, ..., No € |Talr,, we have
rE-M:o = M[X1 =Np,...,xp = Nn] S ‘O"r/\rl/\.../\rn

Proof. By induction on the derivation of T =, M : 0.
Ny:obFaM:7
We only see this interesting case: [ FA Ay. M :0 — 7

(=1)

By IH, for all N; € |7|r,, X € |o]|r,.,

(Ay.M[X := N)X =5 M[X:= N,y = X] € ‘T’r/\(/\fill r)
By (AUXO).
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Step 1 comes later

Main Theorem. Let M € A, with FV(M) C {xy,...,xa}.

LetN=x3:71,...,x,: 7 and Iy, ..., [, be type environments.
For all Ny € |11lr,, ..., No € |Talr,, we have
rE-M:o = M[X1 =Np,...,xp = Nn] S ‘O"r/\rl/\.../\rn

Proof. By induction on the derivation of ' -x M : o.
Ny:obFaM:7
We only see this interesting case: [ FA Ay. M :0 — 7

(=1)

By IH, for all N; € |7|r,, X € |o]|r,.,

(Ay.-M[X:= N))X =5 M[x:= N,y := X] € ‘T’r/\(/\fill r)
By (AUX0). By definition, Ay.M[% := N] € [0 = T|rppn ry- O
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Summing up. ..

Logical Approximation Theorem. For M € A.

FrkEaM:o < FPe AM).THEAP: 0o
Semantic Approximation Theorem. For M € A.

M1, = J{IAL, | A € A(M)}

Corollary. The theory of the filter model BCD includes BT:

B C Th(FBP)
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Bibliography (aka, where should | study?)

> Bohm tree semantics: where you want. E.g.
H. Barendregt. The type free lambda calculus. (1977).

> Filter models:
H. Barendregt, W. Dekkers, R. Statman. Lambda Calculus
with Types. Perspectives in logic, Cambridge University Press
2013, ISBN 978-0-521-76614-2, pp. I-XXII, 1-833

» Approximation theorem:
M. Dezani-Ciancaglini, F. Honsell and Y. Motohama.
Approximation Theorems for Intersection Type Systems.
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