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Logique Linéaire et Paradigmes Logiques du Calcul

Year 2023, Part 3, Lecture 3

Giulio Manzonetto
gmanzone@irif.fr

IRIF — Université Paris Cité
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Introduction

Solvability

Solvability

A λ-term M is solvable if its closure λx⃗ .M admits an applicative
context []P1 · · ·Pn that “send it” to the identity:

(λx⃗ .M)P1 · · ·Pn =β I

Otherwise, we say that M is unsolvable.

Examples

▶ K = λxy.x is solvable: KII →β (λy.I)I →β I.

▶ M = λx .x IΩ is solvable: MK →β KIΩ →β (λy.I)Ω →β I.

▶ Ω is unsolvable, since it does not interact with any context []P

ΩP →β ΩP →β ΩP ′ →β · · ·
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Solvability

Solvability, equivalently

A λ-term M is solvable iff there are P1, . . . ,Pn ∈ Λ such that

(λx⃗ .M)P1 · · ·Pn =β H

for some hnf H.

Proof. (⇒) Trivial, since I is an hnf.
(⇐) Assume (λx⃗ .M)P⃗ =β H, for some P⃗ ∈ Λ and H in hnf. Then
H has shape (for some k ≥ 0 and 1 ≤ j ≤ n > 0)

H = λy1 . . . yn.yjM1 · · ·Mk

Define Uk = λx1 · · · xk.I and apply it n times:

(λx⃗ .M)P⃗ U⃗k ↠β H U⃗k ↠β UkM′
1 · · ·M′

k ↠β I □
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Introduction

Solvability

Solvability and head normalization

▶ A solvable M is capable of interacting with the context
(λx⃗ .[])P⃗ and eventually one the Pi ’s goes in head position.

▶ An unsolvable M leaves its arguments alone, because it always
have its own head redex to reduce.

Theorem (Wadsworth’76)

M is solvable if and only if it is head normalizable.

C.P. Wadsworth. The relation between computational and
denotational properties for Scott’s D∞ models of the
λ-calculus. SIAM J. Comput. 5,3 (1976).
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Introduction

Solvability

Classification Behaviour Result

normalizable P → P1 → P2 ↠ P99 → 42 completely defined

unsolvable P → P ′ → P ↠100 P
′ → · · · undefined

solvable P → o1P1 → o1(o2P2) stable parts
→ o1(o2(o3P3)) → · · ·
↠∞ o1(o2(· · · on · · · ) · · · ) (infinitary)

P P1 P2 P102 42

Take W = (λxy .xyy), then
WWW ⇄ (λx .xWW )W
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Solvability

Classification Behaviour Result

normalizable P → P1 → P2 ↠ P99 → 42 completely defined

unsolvable P → P ′ → P ↠100 P
′ → · · · undefined

solvable P → o1P1 → o1(o2P2) stable parts
→ o1(o2(o3P3)) → · · ·
↠∞ o1(o2(· · · on · · · ) · · · ) (infinitary)

P P1

3,

P2

1

P3

4

π

15926535 · · ·

By collecting all stable parts one constructs a possibly infinite tree.
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Introduction

Solvability

Playing with fixed point combinators

Let
Y = λf.∆f∆f ,

with ∆f = λx .f (xx).

▶ Y is head-normalizing, but we can keep reducing it:

Y ↠β λf.f(∆f∆f) ↠β λf.f(f(∆f∆f)) ↠β λf.fn(∆f∆f) ↠β · · ·

The portion λf .f (f (· · · )) is a stable part of the output.

▶ YK is not head-normalizing:

YK ↠β K(∆K∆K) ↠β λx1.∆K∆K ↠β λx1 . . . xn.∆K∆K ↠β · · ·

The portion λx1 . . . xn. is a stable part of the output, but it
does not contribute to the production of a hnf. YK unsolvable.
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Solvability

The interest of semantics

Coder

P

Semanticist

M |= P = ⊥
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The Böhm Tree Semantics
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The Böhm Tree Semantics

Syntactic Models

Models

Tree-like
structures

description

The (possibly infinitary) behaviour of a λ-term
is modelled as a (possibly infinite) tree

The type free lambda calculus. (1977).
H. Barendregt. Handbook of Mathematical Logic, volume 90
of Studies in Logic and the Foundations of Mathematics.
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The Böhm Tree Semantics (Barendregt ’77)

Given a program M, its Böhm tree BT(M) is defined by:

▶ If M is unsolvable, then BT(M) = ⊥,
where ⊥ is a constant representing the undefined.

▶ Otherwise M ↠β λx1 . . . xn.y M1 · · ·Mk and

BT(M) = λx1 . . . xn.y

BT(M1) · · · BT(Mk)

Example
BT(Y)

q
λf .f

f

f

f

...
This induces an equivalence on λ-terms:

M =B N ⇐⇒ BT(M) = BT(N)
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The Böhm Tree Semantics

Böhm trees - Examples
BT(X )

q
λx .x

λy .yx

λz .zy

λw .wz

λq.qw

BT(YI)
q
⊥

BT(Pn)
q

λx1 . . . xny .y

x1 · · · xn

where

▶ Pn = λx1 . . . xny.yx1 · · · xn
▶ X = Y(λyx.xxy)
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The Böhm Tree Semantics

The Böhm tree semantics is “infinitary”

There are λ-terms M,N with the same Böhm tree, that
cannot be equated by any “finite” reduction.

1. Take a λ-term M satisfying (Its definition? Exercise!):

M ↠β λzx .x(Mz)

2. Take a variable y . Then, BT(My) = λx .x

BT(My)

= λx .x

λx .x

...

3. For y ̸= z , we have My ̸=β Mz

but BT(My) = BT(Mz).
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The Böhm Tree Semantics

Digression — Böhm Trees as Coinductive Data-Types

Böhm-like trees are coinductively defined by:

T ::=co-ind ⊥ | λx1 . . . xn.yT1 · · ·Tk

Intuition

▶ Start from the set of all possibly infinite labelles trees.

▶ Throw away all trees that do not satisfy the above rules.

▶ E.g., ⊥⊥, infinitely branching trees, λx1.λx2.λx3.λx4. . . .

Inductive grammar ∼= least fixed point

Co-inductive grammar ∼= greatest fixed point

Question: do you see a non λ-definable Böhm-like tree?
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The Böhm Tree Semantics

Digression — Böhm Trees as normal forms

The λ∞-calculus:

(Λ∞) M,N ::=co-ind ⊥ | x | λx .M | MN

with β-reduction and ⊥-reductions: ⊥M →⊥ ⊥ and λx .⊥ →⊥ ⊥.

Reduction sequences may now have transfinite length α (ordinal)

M0 →β⊥ M1 →β⊥ · · ·Mω →β⊥ Mω+1 →β⊥ · · · ↠→β⊥ Mα

Theorem (Kennaway et Al.)

1. The λ∞-calculus is confluent.

2. The λ∞-calculus enjoys strong normalization.

3. For all finite M ∈ Λ, M ↠→β⊥ BT(M).
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R. Kennaway, J.W. Klop, M. R. Sleep, F.-J. de Vries: Infinitary
Lambda Calculus. Theor. Comput. Sci. 175(1): 93-125 (1997)

 Lukasz Czajka: A new coinductive confluence proof for
infinitary λ-calculus. Log. Methods Comput. Sci. 16(1) (2020)
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Böhm Approximants

That was scary. . . can we go back to induction?

▶ Finite trees are pieces of “output” that can be obtained in a
finite amount of time.

▶ Böhm trees are naturally ordered, as follows:

λf .f

f

f

f

...

⊑λf .f

f

f

⊥

⊑λf .f

f

⊥

⊑λf .f

⊥

⊑⊥
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Böhm Approximants

Lambda terms approximations

▶ The set Λ⊥ of λ⊥-terms is defined as follows:

P,Q ::= ⊥ | x | PQ | λx .P

▶ Intuively, the constant ⊥ represents an unsolvable (Ω).

▶ →β extends in the obvious way:

(λx .P)Q →β P[x := Q]

▶ The ⊥-reduction is generated by:

⊥M →⊥ ⊥, λx .⊥ →⊥ ⊥
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Böhm Approximants

Ordering λ⊥-terms

The ordering ⊑ on λ⊥-terms is generated by:

⊥ ⊑ P

P ⊑ P ′ Q ⊑ Q ′

PQ ⊑ P ′Q ′
P ⊑ P ′

λx .P ⊑ λx .P ′

The corresponding “sup” P ⊔ Q is inductively given by:

⊥ ⊔ P = P ⊔ ⊥ = P

(PQ) ⊔ (P ′Q ′) = (P ⊔ P ′)(Q ⊔ Q ′)

(λx .P) ⊔ (λx .P ′) = λx .(P ⊔ P ′)

(It is well-defined on “compatible” elements only.)
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The Böhm Tree Semantics

Böhm Approximants

Finite Approximants

The set A of finite approximants is defined as follows:

(A) A, Ai ::= ⊥ | λx1 . . . xn.y A1 · · ·Ak

Characterization. For P ∈ Λ⊥, the following are equivalent:

1. P ∈ A,

2. P is normal w.r.t. →β⊥.
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The Böhm Tree Semantics

Böhm Approximants

Direct approximation

The direct approximant ω(M) ∈ A of M ∈ Λ is inductively defined:

ω(λx1 . . . xn.yM1 · · ·Mk) = λx1 . . . xn.yω(M1) · · ·ω(Mk),

ω(λx1 . . . xn.(λy .P)QM1 · · ·Mk) = ⊥

Lemma. M →β N implies ω(M) ⊑ ω(N).

Proof. By structural induction on M. There are two cases:

1. M has a head redex. Trivial since ω(M) = ⊥.

2. M = λx⃗ .yM1M2 · · ·Mk , N = λx⃗ .yM ′
1M2 · · ·Mk , with

M1 →β M ′
1. From the induction hypothesis ω(M1) ⊑ ω(M ′

1),
thus the conclusion follows. □
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The Böhm Tree Semantics

Böhm Approximants

Finite approximants of a λ-term

The set of finite approximants of a λ-term M is defined by:

A(M)
(1)
= {ω(N) | N =β M}, equivalently*,
(2)
= {A ∈ A | ∃N ∈ Λ .M ↠β N and A ⊑ N}
̸= {ω(N) | M ↠β N}

* Some work is needed to prove the equivalence (1) ⇐⇒ (2).

Lemma. If M =β N then A(M) = A(N).

Trivial with (1), non-trivial with (2). [Hint: use confluence!] □
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The Böhm Tree Semantics

Böhm Approximants

Lemma. The set A(M) is an ideal w.r.t. ⊑:

1. ⊥ ∈ A(M);

2. if A1,A2 ∈ A(M) then A1 ⊔ A2 ∈ A(M);

3. downward closed: A1 ⊑ A2 ∈ A(M) ⇒ A1 ∈ A(M).

Proof. With Definition 2, (1) and (3) become trivial.

2) If A1,A2 ∈ A(M) then A1 = ω(N1) and A2 = ω(N2) for some

N1 =β M =β N2

R1

    ~~~~
R2

    ~~~~

R
    ~~~~

Conclude since direct approximants increase along reduction. □
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Böhm Approximants

The Syntactic Approximation Theorem

For all M ∈ Λ,

BT(M) =
⊔

A(M)

Examples:

▶ A(Ω) = {⊥}, for Ω = (λx .xx)(λx .xx),

▶ A(Y) = { ⊥,
λf .f⊥,
λf .f (f⊥),
λf .f (f (f⊥)), . . . ,
λf .f n(⊥), . . . }

Example

BT(Y)
q

λf .f

f

f

f

...
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Denotational Models

Models

Tree-like
structures

Sets of types

description

The meaning of a λ-term
is given by the set of its types

A filter λ-model and the completeness of type assignment.
H. Barendregt, M. Coppo, M. Dezani-Ciancaglini.
J. Symb. Log. 48(4): 931-940 (1983)
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BCD Types:

Aω : ω, α, β, . . . countable set of atoms
T∧ : σ, τ ::= ω | α | σ → τ | σ ∧ τ intersection types

Derivation Rules:

x1 : σ1, . . . , xn : σn ⊢∧ xi : σi (ax) Γ ⊢∧ M : ω (U)

Γ ⊢∧ M : τ → σ Γ ⊢∧ N : τ

Γ ⊢∧ MN : σ
(→E )

Γ, x : σ ⊢∧ M : τ

Γ ⊢∧ λx .M : σ → τ
(→I )

Γ ⊢∧ M : σ Γ ⊢∧ M : τ

Γ ⊢∧ M : σ ∧ τ
(∧I )

Γ ⊢∧ M : σ σ ≤ τ

Γ ⊢∧ M : τ
(≤)

Subtyping:

σ ≤ σ (refl) σ ∧ τ ≤ σ (inclL) σ ∧ τ ≤ τ (inclR) σ ≤ ω (top)

(σ → τ) ∧ (σ → τ ′) ≤ σ → (τ ∧ τ ′) (→∧) ω ≤ σ → ω (arrω)

σ ≤ γ γ ≤ τ

σ ≤ τ
(trans)

σ ≤ τ σ ≤ τ ′

σ ≤ τ ∧ τ ′
(glb)

σ′ ≤ σ τ ≤ τ ′

σ → τ ≤ σ′ → τ ′
(→)
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Filters of types

We study the collection

F = {F ⊆ T∧ | F is a filter of types }

▶ A subset F ⊆ T∧ is a filter of types if:

1. ω ∈ F ,
2. σ, τ ∈ F implies σ ∧ τ ∈ F ,
3. σ ∈ F and σ ≤ τ imply τ ∈ F .

▶ The principal filter generated by σ ∈ T∧ is given by:

σ↑ = {τ ∈ T∧ | σ ≤ τ} ∈ F
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Interpretation in the filter model BCD

Given M ∈ Λ and a valuation ρ : Λ → F , define the interpretation
of M w.r.t. ρ by induction:

[[x ]]Fρ = ρ(x)

[[λx .M]]Fρ = {σ → τ | τ ∈ [[M]]Fρ[x :=σ↑]}↑
[[MN]]Fρ = {τ | ∃σ ∈ [[N]]Fρ . σ → τ ∈ [[M]]Fρ }

Characterization. For M ∈ Λ, we have

[[M]]Fρ = {σ ∈ T∧ | Γ ⊢∧ M : σ}

where ρ(x) = τ ↑, for all x : τ ∈ Γ.
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Interpretation - examples

Remark. If M is closed, then ∀ρ, ρ′ . [[M]]ρ = [[M]]ρ′ (forget the ρ!).

Exemples:

▶ [[Ω]] = {σ | σ ≃ ω} (since ⊢∧ Ω : ω)

▶ [[I]] = {σ → σ | σ ∈ T∧}↑
▶ [[λf .f Ω]] = {(ω → σ) → σ | σ ∈ T∧}↑
▶ [[λx .xx ]] = {(σ ∧ (σ → τ)) → τ | σ, τ ∈ T∧}↑
▶ [[K]] = {σ → τ → σ | σ, τ ∈ T∧}↑
▶ Spoiler alert. For all U unsolvable, we have (∀ρ):

[[U]]ρ = {σ | σ ≃ ω}
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The theory induced by the model

Every model induces a notion of equality between λ-terms:

F |= M = N if and only if ∀ρ . [[M]]ρ = [[N]]ρ

Main properties

Soundness:
M =β N ⇒ F |= M = N

(By the characterization + SR + SE)

Contextuality:

F |= M = M ′ ⇒ F |= λx .M = λx .M ′

F |= M = M ′ and F |= N = N ′ ⇒ F |= MN = M ′N ′
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Lambda terms sharing the same interpretation

Examples:

▶ F |= KIΩ = I, as KIΩ =β I.

▶ F |= Ω = YI, as they are both unsolvable. Thus:

▶ F |= λx .xΩ = λx .x(YI), by contextuality.

▶ For all fpc’s Z , we have F |= Z = Y.
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Interpreting λ⊥-terms

We can extend the type system BCD to Λ⊥ by adding this rule:

Γ ⊢∧ ⊥ : ω
(⊥)

And therefore the interpretation of λ⊥-terms:

[[⊥]]ρ = {σ | σ ≃ ω}

Everything works fine because ⊥ and Ω have the same properties.
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Typing the direct approximant

Lemma. For all M ∈ Λ :

Γ ⊢ ω(M) : σ ⇒ Γ ⊢ M : σ

Proof. By induction on a derivation of Γ ⊢ ω(M) : σ.
Case ω(M) = ⊥. Then σ ≃ ω, whence Γ ⊢∧ M : ω.
Case ω(M) = yω(M1) · · ·ω(Mk), since M = yM1 · · ·Mk .
By Inversion Lemma II, applied k times, we get:

Γ ⊢∧ y : τ1 → · · · → τk → σ

Γ ⊢∧ ω(M1) : τ1 · · · Γ ⊢∧ ω(Mk) : τk .

By IH, we get Γ ⊢∧ Mi : τi , from which Γ ⊢∧ yM1 · · ·Mk : σ
follows.

To be continued. . .
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Typing the direct approximant
Lemma. For all M ∈ Λ :

Γ ⊢ ω(M) : σ ⇒ Γ ⊢ M : σ

Proof. Case ω(M) = λx .ω(M ′), with M = λx .M ′. By Inversion
Lemma I, there are τ1, . . . , τk , γ1, . . . , γk ∈ T∧ such that

(τ1 → γ1) ∧ · · · ∧ (τk → γk) ≤ σ

∀i ∈ {1, . . . , k} . Γ, x : τi ⊢∧ ω(M ′) : γi .

By IH, we get Γ, x : τi ⊢∧ M ′ : γi . We conclude:

Γ ⊢∧ λx .M ′ : τ1 → γ1 · · · Γ ⊢∧ λx .M ′ : τk → γk
Γ ⊢∧ λx .M ′ : ∧i (τi → γi ) ∧i (τi → γi ) ≤ σ

Γ ⊢∧ λx .M : σ
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Semantic Approximation Theorem

Semantic Approximation Theorem. For M ∈ Λ.

[[M]]ρ =
⋃

{[[A]]ρ | A ∈ A(M)}

This is what we are going to prove.

Corollary. If BT(M) = BT(N) then F |= M = N.

Proof. Assume BT(M) = BT(N). Then also A(M) = A(N).

[[M]]ρ =
⋃

A∈A(M)[[A]]ρ, by Approximation Theorem,⋃
A∈A(N)[[A]]ρ = [[N]]ρ □
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Logical Approximation Theorem

Theorem

Γ ⊢∧ M : σ ⇐⇒ ∃P ∈ A(M) . Γ ⊢∧ P : σ

Proof. (⇐) Assume Γ ⊢∧ P : σ, for some P ∈ A(M).

▶ By Definition 1, there exists N =β M such that P = ω(N).

▶ We have seen that Γ ⊢∧ ω(N) : σ implies Γ ⊢∧ N : σ.

▶ By SR+SE+confluence, typing is invariant under =β.

▶ Conclude Γ ⊢∧ M : σ.

(⇒) Mmm... it does not seem so easy. Ideas?
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Of course!

The property that we want for the λ-terms of type σ in Γ:

PΓ(σ) = {M ∈ Λ | ∃A ∈ A(M) . Γ ⊢∧ A : σ}

Define the interpretation of σ ∈ T∧ in Γ as follows:

|α|Γ = PΓ(α), for α ∈ Aω,

|σ → τ |Γ = {M | ∀Γ′,∀N ∈ |σ|Γ′ .MN ∈ |τ |Γ∧Γ′}
|σ ∧ τ |Γ = |σ|Γ ∩ |τ |Γ

Remark. Recall that ⊥ ∈ A(M) and Γ ⊢∧ M : ω, for every M. So

σ ≃ ω implies |σ|Γ = Λ

In particular |σ ∧ ω|Γ = |σ|Γ, which is consistent with σ ∧ ω ≃ σ.
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Two steps

We need to prove that all typable terms are approximable:

Γ ⊢∧ M : σ ⇒ M ∈ PΓ(σ)

The proof is split into 2 steps. Step 1:

Γ ⊢∧ M : σ ⇒ M ∈ |σ|Γ (1)

Step 2:
M ∈ |σ|Γ ⇒ M ∈ PΓ(σ) (2)
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Auxiliary lemmas

Lemma (AUX0). M ∈ |σ|Γ and M =β N implies N ∈ |σ|Γ.

Proof sketch. By induction on σ.

Lemma (AUX1). For M ∈ Λ and z /∈ FV(M), we have:

Mz ∈ PΓ,z:τ (σ) ⇒ M ∈ PΓ(τ → σ)

Proof sketch. Let P ∈ A(Mz) such that Γ, z : τ ⊢∧ P : σ. By cases
on P and M, show that ∃P ′ ∈ A(M) such that Γ ⊢∧ P ′ : τ → σ.

Lemma (AUX2). σ ≤ τ implies |σ|Γ ⊆ |τ |Γ.

Proof sketch. By induction on a derivation of σ ≤ τ .



42/47

Denotational Models

Filter Models

Step 2 comes first
Main Lemma.

1. xM1 · · ·Mn ∈ PΓ(σ) implies xM1 · · ·Mn ∈ |σ|Γ.

2. |σ|Γ ⊆ PΓ(σ).

Proof. By simultaneous induction (IH1, IH2 = ind. hyp.)
1. Case σ ≃ ω. Trivial since |ω|Γ = Λ.
Case σ = τ1 ∧ τ2. Easy.
Case σ = τ1 → τ2 ( ̸≃ ω). Let xM⃗ ∈ PΓ(σ). Then

∃P ∈ A(xM1 · · ·Mn) . Γ ⊢∧ P : τ1 → τ2

with Ai ∈ A(Mi ).

By IH2, ∀N ∈ |τ1|Γ′ ⇒ N ∈ PΓ′(σ), i.e.
∃An+1 ∈ A(N) such that

Γ ∧

Γ′ ⊢∧ An+1 : τ1. By (→E ),

Γ ∧ Γ′ ⊢∧ xA1 · · ·An+1 : τ2 ⇒IH1 xM⃗N ∈ |τ2|Γ∧Γ′ (conclude)
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Step 2 comes first

Main Lemma.

1. xM1 · · ·Mn ∈ PΓ(σ) implies xM1 · · ·Mn ∈ |σ|Γ.

2. |σ|Γ ⊆ PΓ(σ).

Proof. 2. Case σ ≃ ω. Trivial since PΓ(ω) = Λ.
Case σ = τ1 ∧ τ2. By rule (∧I ) and IH2.
Case σ = τ1 → τ2. Take M ∈ |τ1 → τ2|Γ and z a fresh variable.
Since z ∈ |τ1|z:τ1 , by IH1, we have

M ∈ |τ1 → τ2|Γ and z ∈ |τ1|z:τ1 ⇒ Mz ∈ |τ2|Γ,z:τ2
(by IH2) ⇒ Mz ∈ PΓ,z:τ1(τ2)
(AUX1) ⇒ M ∈ PΓ(τ1 → τ2)

□
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Step 1 comes later

Main Theorem. Let M ∈ Λ, with FV(M) ⊆ {x1, . . . , xn}.
Let Γ = x1 : τ1, . . . , xn : τn and Γ1, . . . , Γn be type environments.
For all N1 ∈ |τ1|Γ1 , . . . ,Nn ∈ |τn|Γn , we have

Γ ⊢∧ M : σ ⇒ M[x1 := N1, . . . , xn := Nn] ∈ |σ|Γ∧Γ1∧···∧Γn

Proof. By induction on the derivation of Γ ⊢∧ M : σ.

We only see this interesting case:

Γ, y : σ ⊢∧ M : τ

Γ ⊢∧ λy .M : σ → τ
(→I )

By IH, for all Ni ∈ |τi |Γi , X ∈ |σ|Γn+1

(λy .M[x⃗ := N⃗])X →β

M[x⃗ := N⃗, y := X ] ∈ |τ |Γ∧(∧n+1
j=1 Γj )

By (AUX0). By definition, λy .M[x⃗ := N⃗] ∈ |σ → τ |Γ∧(∧n
i=1 Γi )

. □
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Summing up. . .

Logical Approximation Theorem. For M ∈ Λ.

Γ ⊢∧ M : σ ⇐⇒ ∃P ∈ A(M) . Γ ⊢∧ P : σ

Semantic Approximation Theorem. For M ∈ Λ.

[[M]]ρ =
⋃

{[[A]]ρ | A ∈ A(M)}

Corollary. The theory of the filter model BCD includes BT:

B ⊆ Th(FBCD)
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